Skip to main content
Log in

Improved Mass Multiplication of Rhodiola crenulata Shoots Using Temporary Immersion Bioreactor with Forced Ventilation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A temporary immersion bioreactor system was found to be suitable for mass shoot proliferation of Rhodiola crenulata. The shoot multiplication ratio and hyperhydration rate reached 46.8 and 35.4%, respectively, at a temporary immersion cycle of 3-min immersion every 300 min. Forced ventilation was employed in the temporary immersion bioreactor culture in order to decrease the hyperhydration rate, improve shoot quality and enhance the multiplication ratio. The highest multiplication ratio of 55.7 was obtained under a temporary immersion cycle of 3-min immersion every 180 min with the forced ventilation at an air flow rate of 40 l/h, and the hyperhydration rate was reduced to 26.1%. Forced ventilation also improved the subsequent elongation and rooting rate of these proliferated shoots, and the shoot cultures from the temporary immersion bioreactor formed complete plantlets when subcultured onto a rooting medium containing 5 μmol/l indole-3-acetic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Du, M., & Xie, J. M. (1993). Flavonol glycosides from Rhodiola crenulata. Phytochemistry, 38, 809–810.

    Google Scholar 

  2. Lei, Y. D., Nan, P., Tsering, T., Wang, L., Liu, S. P., & Zhong, Y. (2004). Interpopulation variability of rhizome essential oils in Rhodiola crenulata from Tibet and Yunnan, China. Biochemical System Ecology, 32, 611–614.

    Article  CAS  Google Scholar 

  3. Cui, S. Y., Hu, X. L., Chen, X. G., & Hu, Z. D. (2003). Determination of p-tyrosol and salidroside in three samples pf Rhodiola crenulata and one of Rhodiola kirilowii by capillary zone electrophoresis. Analytical and Bioanalytical Chemistry, 377, 370–374.

    Article  CAS  Google Scholar 

  4. Wang, S., & Wang, F. P. (1992). Studies on the chemical components of Rhodiola crenulata. Acta. Pharmacologia Sinica, 27, 117–120.

    CAS  Google Scholar 

  5. Liu, C. Z., Murch, S. J., EL-Demerdash, M., & Saxena, P. K. (2004). Artemisia judaica L.: micropropagation and antioxidant activity. Journal of Biotechnology, 110, 63–71.

    Article  CAS  Google Scholar 

  6. Liu, C. Z., Wang, Y. C., Guo, C., Ouyang, F., Ye, H. C., & Li, G. F. (1998). Production of artemisinin by shoot cultures of Artemisia annua L. in a modified inner-loop mist bioreactor. Plant Science, 135, 211–217.

    Article  CAS  Google Scholar 

  7. Thakur, R., Sood, A., Nagar, P. K., Pandey, S., Sobti, R. C., & Ahuja, P. S. (2006). Regulation of growth of Lilium plantlets in liquid medium by application of paclobutrazol or ancymidol, for its amenability in a bioreactor system: growth parameters. Plant Cell Reports, 25, 382–391.

    Article  CAS  Google Scholar 

  8. Murch, S. J., Liu, C. Z., Romero, R. M., & Saxena, P. K. (2004). In vitro culture and temporary immersion bioreactor production of Crescentia cujete. Plant Cell Tissue Organ Culture, 78, 63–68.

    Article  CAS  Google Scholar 

  9. Zobayed, S. M. A., Murch, S. J., Rupasinghe, H. P. V., de Boer, J. G., Glickman, B. W., & Saxena, P. K. (2004). Optimized system for biomass production, chemical characterization and evaluation of chemo-preventive properties of Scutellaria baicalensis Georgi. Plant Science, 167, 439–446.

    Article  CAS  Google Scholar 

  10. Dewir, Y. H., Chakrabarty, D., Ali, M. B., Hahn, E. J., & Paek, K. Y. (2006). Lipid peroxidation and antioxidant enzyme activities of Euphorbia millii hyperhydric shoots. Environmental and Experimental Botany, 58, 93–99.

    Article  CAS  Google Scholar 

  11. Jay, V., Genestier, S., & Courduroux, J. (1992). Bioreactor studies on the effect of dissolved oxygen concentrations on growth and differentiation of carrot (Daucus carota L.) cell cultures. Plant Cell Reports, 11, 605–608.

    Article  CAS  Google Scholar 

  12. Kobayashi, Y., Fukui, H., & Tabata, M. (1991). Effect of carbon dioxide and ethylene on berberine production and cell browning in Thalictrum minus ceil cultures. Plant Cell Reports, 19, 496–499.

    Google Scholar 

  13. Zobayed, S. M. A., Afreen, F., Kubota, C., & Kozal, T. (2000). Water control and survival of Ipomoea batatas grown photoautotrophically under forced ventilation and photomixotrophically under natural ventilation. Annals of Botany, 86, 603–610.

    Article  Google Scholar 

  14. Zobayed, S. M. A., Armstrong, J., & Armstrong, W. (2001). Micropropagation of potato: evaluation of closed, diffusive and forced ventilation on growth and tuberization. Annals of Botany, 87, 53–59.

    Article  CAS  Google Scholar 

  15. Zobayed, S. M. A. (2005). Ventilation in micropropagation. In T. Kozai et al. (Eds.), Photoautotrophic (sugar-free medium) micropropagation as a new propagation and transplant production system (pp. 147–186). Printed in the Netherlands: Springer.

  16. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  17. Ziv, M. (1991). Vitrification: Morphological and physiological disorders of in vitro plants. In P. C. Debergh & R. H. Zimmerman (Eds.), Micropropagation (pp. 45–69). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  18. Porras, R. J. (1991). Recent advances and re-assessments in chlorophyll extraction and assay procedures for terrestrial, aquatic and marine organisms including recalcitrant algae. In H. Scheer (Ed.), Chemistry of chlorophyll (p. 320). Boca Raton: CRC.

    Google Scholar 

  19. Capellades, M., Fontarnau, R., Carulla, C., & Debergh, P. (1990). Environment influences anatomy of stomatal and epidermal cells in tissue-cultured Rosa multiflora. Journal of the American Society for Horticultural Science, 115, 141–145.

    Google Scholar 

  20. Albarran, J., Bertrand, B., Lartaud, M., & Etienne, H. (2005). Cycle characteristics in a temporary immersion bioreactor affect regeneration, morphology, water and mineral status of coffee (Coffea arabica) somatic embryos. Plant Cell, Tissue and Organ Culture, 81, 27–36.

    Article  CAS  Google Scholar 

  21. Roels, S., Escalona, M., Cejas, I., Noceda, C., Rodriguez, R., & Canal, M. J. (2005). Optimization of plantain (Musa AAB) micropropagation by temporary immersion system. Plant Cell, Tissue and Organ Culture, 82, 57–66.

    Article  CAS  Google Scholar 

  22. Yang, S. H., & Yeh, D. M. (2008). In vitro leaf anatomy, ex vitro photosynthetic behaviors and growth of Calathea orbifolia (Linden) Kennedy plants obtained from semi-solid medium and temporary immersion systems. Plant Cell, Tissue and Organ Culture, 93, 201–207.

    Article  CAS  Google Scholar 

  23. Escalona, M., Samson, G., Borroto, C., & Desjardins, Y. (2003). Physiology of effects of temporary immersion bioreactors on micropropagated pineapple plantlets. In Vitro Cellular & Developmental Biology-Plant, 39, 651–656.

    Article  CAS  Google Scholar 

  24. Heo, J., & Kozai, T. (1999). Forced ventilation micropropagation system for enhancing photosynthesis, growth and development of sweet potato plantlets. Environment Control in Biology, 37, 83–92.

    Article  Google Scholar 

  25. Afreen, F., Zobayed, S. M. A., & Kozai, T. (2002). Photoautotrophic culture of Coffea arabusta somatic embryos II: development of a bioreactor for the large-scale plantlet conversion from cotyledonary embryos. Annals of Botany, 9, 20–29.

    Google Scholar 

  26. Wilson, S. B., Heo, J., Kubota, C., & Kozai, T. (2001). A forced ventilation micropropagation system for photoautotrophic production of Sweet potato plug plantlets in a scaled-up culture vessel: II. Carbohydrate status. HortTechnology, 11, 95–99.

    Google Scholar 

  27. Zobayed, S. M. A., Armstrong, J., & Armstrong, W. (1999). Cauliflower shoot-culture effects of different types of ventilation on growth and physiology. Plant Science, 141, 221–231.

    Google Scholar 

Download references

Acknowledgment

This work is financially supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. YZ-06-03), the Chinese Academy of Sciences Visiting Professorship for Senior International Scientists (No. 2011T1G05) and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Zhao Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Sun, W., Wang, Y. et al. Improved Mass Multiplication of Rhodiola crenulata Shoots Using Temporary Immersion Bioreactor with Forced Ventilation. Appl Biochem Biotechnol 166, 1480–1490 (2012). https://doi.org/10.1007/s12010-012-9542-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9542-x

Keywords

Navigation