Skip to main content
Log in

Correlations Between FAS Elongation Cycle Genes Expression and Fatty Acid Production for Improvement of Long-Chain Fatty Acids in Escherichia coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microorganisms have been used for biodiesel (fatty acid methyl ester) production due to their significant environmental and economic benefits. The aim of the present research was to develop new strains of Escherichia coli K-12 MG1655 and to increase the content of long-chain fatty acids by overexpressing essential enzymes that are involved in the fatty acid synthase elongation cycle. In addition, the relationship of β-ketoacyl-acyl carrier protein (ACP) synthase (fabH), β-ketoacyl-ACP reductase (fabG), β-hydroxyacyl-ACP dehydrase (fabZ), and β-enoyl-ACP reductase (fabI) with respect to fatty acid production was investigated. The four enzymes play a unique role in fatty acid biosynthesis and elongation processes. We report the generation of recombinant E. coli strains that produced long-chain fatty acids to amounts twofold over wild type. To verify the results, NAD+/NADH ratios and glucose analyses were performed. We also confirmed that FabZ plays an important role in producing unsaturated fatty acids (UFAs) as E. coli SGJS25 (overexpressing the fabZ gene) produced the highest percentage of UFAs (35 % of total long-chain fatty acids), over wild type and other recombinants. Indeed, cis-9-hexadecenoic acid, a major UFA in E. coli SGJS25, was produced at levels 20-fold higher than in wild type after 20 h in culture. The biochemically engineered E. coli presented in this study is expected to be more economical for producing long-chain fatty acids in quality biodiesel production processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu, T., & Khosla, C. (2010). Annuual Review of Genetics, 44, 53–69.

    Article  CAS  Google Scholar 

  2. Steen, E. J., Kang, Y., Bokinsky, G., Hu, Z., Schirmer, A., McClure, A., et al. (2010). Nature Letters, 463, 559–563.

    Article  CAS  Google Scholar 

  3. Cao, Y., Yang, J., Xian, M., Xu, X., & Liu, W. (2010). Applied Microbiology and Biotechnology, 87, 271–280.

    Article  CAS  Google Scholar 

  4. Liu, X., Sheng, J., & Curtiss, R. (2011). Proceedings of the National Academy of Sciences of the United States of America, 108, 6899–6904.

    Article  CAS  Google Scholar 

  5. Meng, X., Yang, J., Cao, Y., Li, L., Jiang, X., Xu, X., et al. (2011). Journal of Industrial Microbiology & Biotechnology, 38, 919–925.

    Article  CAS  Google Scholar 

  6. Jeon, E. Y., Lee, S. H., Won, J. I., Han, S. O., Kim, J. Y., & Lee, J. W. (2011). Enzyme and Microbial Technology, 49, 44–51.

    Article  CAS  Google Scholar 

  7. Chan, D. I., & Vogel, H. J. (2010). Biochemical Journal, 430, 1–19.

    Article  CAS  Google Scholar 

  8. Heath, R. J., & Charles, O. R. (1996). Journal of Biological Chemistry, 271, 1833–1836.

    Article  CAS  Google Scholar 

  9. Marrakchi, H., Zhang, Y. M., & Rock, C. O. (2002). Biochemical Society Transactions, 30, 1050–1055.

    Article  CAS  Google Scholar 

  10. Rawlings, M., & Cronan, J. E., Jr. (1992). Journal of Biological Chemistry, 267, 5751–5754.

    CAS  Google Scholar 

  11. Heath, R. J., & Rock, C. O. (1995). Journal of Biological Chemistry, 270, 15531–15538.

    Article  CAS  Google Scholar 

  12. Heath, R. J., & Rock, C. O. (1996). Journal of Biological Chemistry, 271, 27795–27801.

    Article  CAS  Google Scholar 

  13. Hoang, T. T., Sullivan, S. A., Cusick, J. K., & Schweizer, H. P. (2002). Microbiology, 148, 3849–3856.

    CAS  Google Scholar 

  14. Bergler, H., Fuchsbichler, S., Hogenauer, G., & Turnowsky, F. (1996). European Journal of Biochemistry, 242, 689–694.

    Article  CAS  Google Scholar 

  15. Zha, W., Sheryl, B. P., Zhao, Z., & Zhao, H. (2009). Metabolic Engineering, 11, 192–198.

    Article  CAS  Google Scholar 

  16. Nomura, C. T., Taguchi, K., Taguchi, S., & Doi, Y. (2004). Applied and Environmental Microbiology, 70, 999–1007.

    Article  CAS  Google Scholar 

  17. Smirnova, N., & Reynolds, K. (2001). Journal of Industrial Microbiology & Biotechnology, 27, 246–251.

    Article  CAS  Google Scholar 

  18. Heath, R. J., & Rock, C. O. (1996). Journal of Biological Chemistry, 271, 10996–11000.

    Article  CAS  Google Scholar 

  19. Heath, R. J., & Rock, C. O. (1996). Journal of Biological Chemistry, 271, 1833–1836.

    Article  CAS  Google Scholar 

  20. Subrahmanyam, S., & Cronan, J. E., Jr. (1998). Journal of Bacteriology, 180, 4596–4602.

    CAS  Google Scholar 

  21. Lee, S. H., Jeon, E. Y., Yun, H. S., & Lee, J. W. (2011). Biotechnology and Bioprocess Engineering, 16, 706–713.

    Article  CAS  Google Scholar 

  22. Wang, C., Yoon, S. H., Shah, A. A., Chung, Y. R., Kim, J. Y., Choi, E. S., et al. (2010). Biotechnology and Bioengineering, 107, 421–429.

    Article  CAS  Google Scholar 

  23. Sambrook, J., & Russell, W. (2001). Molecular cloning. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  24. Lennen, R. M., Braden, D. J., West, R. M., Dumesic, J. A., & Pfleger, B. F. (2010). Biotechnology and Bioengineering, 106, 193–202.

    Article  CAS  Google Scholar 

  25. Lu, X., Vora, H., & Khosla, C. (2008). Metabolic Engineering, 10, 333–339.

    Article  CAS  Google Scholar 

  26. Heath, R. J., Su, N., Murphy, C. K., & Rock, C. O. (2000). Journal of Biological Chemistry, 275, 40128–40133.

    Article  CAS  Google Scholar 

  27. Zhang, X., Li, M., Agrawal, A., & San, K. Y. (2011). Metabolic Engineering, 13, 713–722.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Research Foundation of Korea grant (2011–0030348), the Advanced Biomass R&D Center (ABC) of Global Frontier Project funded by the Ministry of Education, Science and Technology (ABC-2011-0031364) and a grant from KRCF Research Initiative Program (KRCF Seed-10-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Jung, Y., Lee, S. et al. Correlations Between FAS Elongation Cycle Genes Expression and Fatty Acid Production for Improvement of Long-Chain Fatty Acids in Escherichia coli . Appl Biochem Biotechnol 169, 1606–1619 (2013). https://doi.org/10.1007/s12010-012-0088-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0088-8

Keywords

Navigation