Skip to main content
Log in

Biotransformation of Indole to Indigo by the Whole Cells of Phenol Hydroxylase Engineered Strain in Biphasic Systems

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biotransformation of indole to indigo in liquid–liquid biphasic systems was performed in Escherichia coli cells expressing phenol hydroxylase. It was suggested that indole could inhibit the cell growth even at low concentration of 0.1 g/L. The critical Log P for strain PH_IND was about 5.0. Three different solvents, i.e., decane, dodecane, and dioctyl phthalate, were selected as organic phase in biphasic media. The results showed that dodecane gave the highest yield of indigo (176.4 mg/L), which was more than that of single phase (90.5 mg/L). The optimal conditions for biotransformation evaluated by response surface methodology were as follows: 540.26 mg/L of indole concentration, 42.27 % of organic phase ratio, and 200 r/min of stirrer speed; under these conditions, the maximal production of indigo was 243.51 mg/L. This study proved that the potential application of strain PH_IND in the biotransformation of indole to indigo using liquid–liquid biphasic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huxtable, R. J. (2001). Molecular Interventions, 1, 141–144.

    CAS  Google Scholar 

  2. Ensley, B. D., Ratzkin, B. J., Osslund, T. D., Simon, M. J., Wackett, L. P., & Gibson, D. T. (1983). Science, 222, 167–169.

    Article  CAS  Google Scholar 

  3. Choi, H. S., Kim, J. K., Cho, E. H., Kim, Y. C., Kim, J. I., & Kim, S. W. (2003). Biochemical and Biophysical Research Communications, 306, 930–936.

    Article  CAS  Google Scholar 

  4. Gillam, E. M., Aguinaldo, A. M., Notley, L. M., Kim, D., Mundkowski, R. G., Volkov, A. A., Arnold, F. H., Soucek, P., DeVoss, J. J., & Guengerich, F. P. (1999). Biochemical and Biophysical Research Communications, 265, 469–472.

    Article  CAS  Google Scholar 

  5. Guengerich, F. P., Sorrells, J. L., Schmitt, S., Krauser, J. A., Aryal, P., & Meijer, L. (2004). Journal of Medicinal Chemistry, 47, 3236–3241.

    Article  CAS  Google Scholar 

  6. Kim, J. Y., Kim, J. K., Lee, S. O., Kim, C. K., & Lee, K. (2005). Letters in Applied Microbiology, 41, 163–168.

    Article  CAS  Google Scholar 

  7. Han, G. H., Shin, H. J., & Kim, S. W. (2008). Enzyme and Microbial Technology, 42, 617–623.

    Article  CAS  Google Scholar 

  8. Doukyu, N., Nakano, T., Okuyama, Y., & Aono, R. (2002). Applied Microbiology and Biotechnology, 58, 543–546.

    Article  CAS  Google Scholar 

  9. Prpich, G. P., & Daugulis, A. J. (2008). Biotechnology and Bioengineering, 97, 536–543.

    Article  Google Scholar 

  10. Garikipati, S. V., McIver, A. M., & Peeples, T. L. (2009). Applied and Environmental Microbiology, 75, 6545–6552.

    Article  CAS  Google Scholar 

  11. Rojas, A., Duque, E., Schmid, A., Hurtado, A., Ramos, J. L., & Segura, A. (2004). Applied and Environmental Microbiology, 70, 3637–3643.

    Article  CAS  Google Scholar 

  12. Doukyu, N., Toyoda, K., & Aono, R. (2003). Applied Microbiology and Biotechnology, 60, 720–725.

    CAS  Google Scholar 

  13. Qu, Y. Y., Shi, S. N., Zhou, H., Ma, Q., Li, X. L., Zhang, X. W., & Zhou, J. T. (2012). PLoS One, 7.

  14. Oztürk, A., & Abdullah, M. I. (2006). Science of the Total Environment, 358, 137–142.

    Article  Google Scholar 

  15. de Bont, J. A. M. (1998). Trends in Biotechnology, 16, 493–499.

    Article  Google Scholar 

  16. Neumann, G., Kabelitz, N., Zehnsdorf, A., Miltner, A., Lippold, H., Meyer, D., Schmid, A., & Heipieper, H. J. (2005). Applied and Environmental Microbiology, 71, 6606–6612.

    Article  CAS  Google Scholar 

  17. Brink, L. E., & Tramper, J. (1985). Biotechnology and Bioengineering, 27, 1258–1269.

    Article  CAS  Google Scholar 

  18. Bruce, L. J., & Daugulis, A. J. (1991). Biotechnology Progress, 7, 116–124.

    Article  CAS  Google Scholar 

  19. Mohana, S., Shrivastava, S., Divecha, J., & Madamwar, D. (2008). Bioresource Technology, 99, 562–569.

    Article  CAS  Google Scholar 

  20. Zhao, L., Zhou, J., Jia, Y., & Chen, J. (2010). Journal of Hazardous Materials, 181, 602–608.

    Article  CAS  Google Scholar 

  21. Tao, Y., Bentley, W. E., & Wood, T. K. (2005). Applied Microbiology and Biotechnology, 68, 614–621.

    Article  CAS  Google Scholar 

  22. Schewe, H., Holtmann, D., & Schrader, J. (2009). Applied Microbiology and Biotechnology, 83, 849–857.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (No. 51078054, 51108120, and 51178139), the National Creative Research Group from the National Natural Science Foundation of China (No. 51121062), the 4th China Postdoctoral Science special Foundation (No. 201104430), and the 46th China Postdoctoral Science Foundation (No. 20090460901).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Ma or Yuanyuan Qu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, S., Ma, F., Sun, T. et al. Biotransformation of Indole to Indigo by the Whole Cells of Phenol Hydroxylase Engineered Strain in Biphasic Systems. Appl Biochem Biotechnol 169, 1088–1097 (2013). https://doi.org/10.1007/s12010-012-0069-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0069-y

Keywords

Navigation