Skip to main content
Log in

Advances and Drawbacks of the Adaptation to Serum-Free Culture of CHO-K1 Cells for Monoclonal Antibody Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Currently, mammalian cell technology has become the focus of biopharmaceutical production, with strict regulatory scrutiny of the techniques employed. Major concerns about the presence of animal-derived components in the culture media led to the development of serum-free (SF) culture processes. However, cell adaptation to SF conditions is still a major challenge and limiting step of process development. Thus, this study aims to assess the impact of SF adaptation on monoclonal antibody (mAb) production, identify the most critical steps of cell adaptation to the SF EX-CELL medium, and create basic process guidelines. The success of SF adaptation was dependent on critical steps that included accentuated cell sensitivity to common culture procedures (centrifugation, trypsinization), initial cell concentration, time given at each step of serum reduction, and, most importantly, medium supplements used to support adaptation. Indeed, only one of the five supplement combinations assessed (rhinsulin, ammonium metavanadate, nickel chloride, and stannous chloride) succeeded for the Chinese hamster ovary-K1 cell line used. This work also revealed that the chemically defined EX-CELL medium benefits mAb production in comparison with the general purpose Dulbecco’s Modified Eagle’s Medium, but the complete removal of serum attenuates these positive effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bollati-Fogolín, M., Forno, G., Nimtz, M., Conradt, H. S., Etcheverrigaray, M., & Kratje, R. (2005). Biotechnology Progress, 21, 17–21.

    Article  Google Scholar 

  2. Brunner, D., Frank, J., Appl, H., Schöffl, H., Pfaller, W., & Gstraunthaler, G. (2010). ALTEX, 27, 53–62.

    Google Scholar 

  3. Chen, Z., Iding, K., Lütkemeyer, D., & Lehmann, J. (2000). Biotechnology Letters, 22, 837–841.

    Article  Google Scholar 

  4. Conrad, M., Umbreit, J., & Moore, E. (1999). The American Journal of the Medical Sciences, 318, 213–229.

    Article  CAS  Google Scholar 

  5. Doyle, A., & Griffiths, J. B. (1998). Cell and tissue culture: laboratory procedures in biotechnology. Chichester, England: John Wiley & Sons.

    Google Scholar 

  6. Elliott, R. L., Elliott, M. C., Wang, F. E. N., & Head, J. F. (1993). Annals of the New York Academy of Sciences, 698, 159–166.

    Article  CAS  Google Scholar 

  7. Eto, N., Yamada, K., Shito, T., Shirahata, S., & Murakami, H. (1991). Agricultural and Biological Chemistry, 55, 863–865.

    Article  CAS  Google Scholar 

  8. Freshney, R. I. (2005). Culture of animal cells: a manual of basic technique (5th ed.). NJ: John Wiley & Sons.

    Book  Google Scholar 

  9. García-Alfonso, C., López-Barea, J., Sanz, P., Repetto, G., & Repetto, M. (1996). Archives of Environmental Contamination and Toxicology, 30, 431–436.

    Article  Google Scholar 

  10. Griffiths, J. B. (1987). Developments in Biological Standardization, 66, 155–160.

    CAS  Google Scholar 

  11. Ho, E., & Ames, B. N. (2002). Proc Nat Acad Sci, 99, 16770–16775.

    Article  CAS  Google Scholar 

  12. Hutchings, S. E., & Sato, G. H. (1978). Proc Nat Acad Sci, 75, 901–904.

    Article  CAS  Google Scholar 

  13. Jacobia, S., Kenerson, R., Tescione, L., Gruber, D., Jayme, D., Munroe, D., & Gorfien, S. (2006). Animal cell technology: basic & applied aspects. Netherlands: Springer.

    Google Scholar 

  14. Jardon, M., & Garnier, A. (2003). Biotechnology Progress, 19, 202–208.

    Article  CAS  Google Scholar 

  15. Kenerson, R. W. (2005) United States Patent Application Publication, Invitrogen Corporation, US, WO/2006/004728.

  16. Kovář, J., & Franěk, F. (1989). Experimental Cell Research, 182, 358–369.

    Article  Google Scholar 

  17. Lee, J., Tscheliessnig, A., Chen, A., Lee, Y. Y., Adduci, G., Choo, A., & Jungbauer, A. (2009). Journal of Chromatography. A, 1216, 2683–2688.

    Article  CAS  Google Scholar 

  18. LeFloch, F., Tessier, B., Chenuet, S., Guillaume, J.-M., Cans, P., Goergen, J.-L., & Marc, A. (2006). Cytotechnology, 52, 39–53.

    Article  CAS  Google Scholar 

  19. Liu, C.-H., & Chang, T.-Y. (2006). Proc Biochem, 41, 2314–2319.

    Article  CAS  Google Scholar 

  20. Min Lee, G., Koo, J. and Flickinger, M. C. (2009), in Encyclopedia of Industrial Biotechnology, John Wiley & Sons.

  21. Ozturk, S., Kasebo, G., Mahaworasilpa, T., & Coster, H. G. (2003). Hybridoma and Hybridomics, 22, 267–272.

    Article  CAS  Google Scholar 

  22. Ozturk, S. S., & Hu, W.-S. (2006). Cell culture technology for pharmaceutical and cell-based therapies. NY: CRC Press.

    Google Scholar 

  23. Ozturk, S. S., & Palsson, B. O. (1991). Biotechnology and Bioengineering, 37, 35–46.

    Article  CAS  Google Scholar 

  24. Rodrigues, M. E., Costa, A. R., Henriques, M., Azeredo, J., & Oliveira, R. (2009). Biotechnology Progress, 26, 332–351.

    Google Scholar 

  25. Schröder, M., Matischak, K., & Friedl, P. (2004). Journal of Biotechnology, 108, 279–292.

    Article  Google Scholar 

  26. Sinacore, M., Drapeau, D., & Adamson, S. (2000). Molecular Biotechnology, 15, 249–257.

    Article  CAS  Google Scholar 

  27. Sung, Y. H., Lim, S. W., Chung, J. Y., & Lee, G. M. (2004). Applied Microbiology and Biotechnology, 63, 527–536.

    Article  CAS  Google Scholar 

  28. Trummer, E., Fauland, K., Seidinger, S., Schriebl, K., Lattenmayer, C., Kunert, R., Vorauer-Uhl, K., Weik, R., Borth, N., Katinger, H., & Müller, D. (2006). Biotechnology and Bioengineering, 94, 1033–1044.

    Article  CAS  Google Scholar 

  29. Tsao, Y.-S., Condon, R., Schaefer, E., Lio, P., & Liu, Z. (2001). Cytotechnology, 37, 189–198.

    Article  CAS  Google Scholar 

  30. Werner, R. G., Noe, W., Kopp, K., & Schlüter, M. (1998). Arzneimittel Forschung, 48, 870–880.

    CAS  Google Scholar 

  31. Wong, V., Wong, N., Tan, H.-K., Wang, D. and Yap, M. (2003) Mol. Eng. Biol. Chem. Sys. (MEBCS).

  32. Wurm, F. M. (2004). Nat Biotech, 22, 1393–1398.

    Article  CAS  Google Scholar 

  33. Zhang, J., & Robinson, D. (2005). Cytotechnology, 48, 59–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding and support from the Portuguese Foundation for Science and Technology (FCT), namely grant ref SFRH/BD/46661/2008 for Maria Elisa Rodrigues and SFRH/BD/46660/2008 for Ana Rita Costa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Henriques.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, M.E., Costa, A.R., Henriques, M. et al. Advances and Drawbacks of the Adaptation to Serum-Free Culture of CHO-K1 Cells for Monoclonal Antibody Production. Appl Biochem Biotechnol 169, 1279–1291 (2013). https://doi.org/10.1007/s12010-012-0068-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0068-z

Keywords

Navigation