Skip to main content
Log in

Activation of Kraft Lignin by an Enzymatic Treatment with a Versatile Peroxidase from Bjerkandera sp. R1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Enzymatic lignin activation may be an environmentally friendly alternative to the use of chemicals in the production of wood fibers composites. Most studies on enzymatic activation of lignin for improving the adhesion of lignocellulosic products have been carried out using laccases. In this work, the use of a versatile peroxidase (VP) from the white-rot fungus Bjerkandera sp. (anamorph R1) for activating Kraft lignin was studied. The effect of enzyme dosage, incubation time, and H2O2 addition profile on lignin activation was evaluated by quantifying the phenoxy radicals formed using electron paramagnetic resonance (EPR) spectroscopy. Two alternative enzymatic systems based on the use of VP (a two-stage and an enzymatic cascade system) were also assayed. At optimal conditions (dose of 15 U g−1 and continuous addition of H2O2 (5.24 μmol h−1) during 1 h) the content of phenoxy radicals was doubled as compared with an untreated control. Moreover, using the two-stage VP system, a lignin activation similar to that found at optimal conditions could be reached in a shorter time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barsberg, S., & Thygesen, L. G. (1999) Spectroscopic properties of oxidation species generated in the lignin of wood fibers by a laccase catalyzed treatment: electronic hole state migration and stabilization in the lignin matrix. Biochimica et Biophysica Acta-General Subjects, 1472, 625–642.

    Google Scholar 

  2. Bruggink, A., Schoevaart, R., & Kieboom, T. (2003). Concepts of nature in organic synthesis: cascade catalysis and multistep conversions in concert. Organic Process Research and Development, 7, 622–640.

    Article  CAS  Google Scholar 

  3. Crestini, C., Perazzini, R., & Saladino, R. (2010). Oxidative functionalisation of lignin by layer-by-layer immobilised laccases and laccase microcapsules. Applied Catalysis A: General, 372, 115–123.

    Article  CAS  Google Scholar 

  4. Chandra, R. P., & Ragauskas, A. J. (2002). Evaluating laccase-facilitated coupling of phenolic acids to high-yield Kraft pulps. Enzyme and Microbial Technology, 30, 855–861.

    Article  CAS  Google Scholar 

  5. Dos Anjos, A., Bortoluzzi, A. J., Caro, M. S. B., Peralta, R. A., Friedermann, G. R., Mangrich, A. S., & Neves, A. (2006). New phenoxyl radical complexes of manganese, gallium, indium and iron based on an H2bbpen ligand derivative. Journal of the Brazilian Chemical Society, 17, 1540–1550.

    Article  Google Scholar 

  6. Euring, M., Rühl, M., Ritter, N., Kües, U., & Kharazipour, A. (2011). Laccase mediator systems for eco-friendly production of medium-density fiberboard (MDF) on a pilot scale: physicochemical analysis of the reaction mechanism. Biotechnology Journal, 6, 1253–1261.

    Article  CAS  Google Scholar 

  7. Felby, C., Hassingboe, J., & Lund, M. (2002). Pilot-scale production of fiberboards made by laccase oxidized wood fibers: board properties and evidence for cross-linking of lignin. Enzyme and Microbial Technology, 31, 736–741.

    Article  CAS  Google Scholar 

  8. Felby, C., Nielsen, B. R., Olesen, P. O., & Skibsted, L. H. (1997). Identification and quantification of radical reaction intermediates by electron spin resonance spectrometry of laccase-catalyzed oxidation of wood fibers from beech (Fagus sylvatica). Applied Microbiology and Biotechnology, 48, 459–464.

    Article  CAS  Google Scholar 

  9. Felby, C., Pedersen, L. S., & Nielsen, B. R. (1997). Enhanced auto adhesion of wood fibers using phenol oxidases. Holzforschung, 51, 281–286.

    Article  CAS  Google Scholar 

  10. Grönqvist, S., Buchert, J., Rantanen, K., Viikari, L., & Suurnäkki, A. (2003). Activity of laccase on unbleached and bleached thermomechanical pulp. Enzyme and Microbial Technology, 32, 439–445.

    Article  Google Scholar 

  11. Gronqvist, S., Viikari, L., Niku‐Paavola, M. L., Orlandi, M., Canevali, C. and Buchert, J. (2005) Oxidation of milled wood lignin with laccase, tyrosinase and horseradish peroxidase. Applied Microbiology and Biotechnology, 67, 489–494.

    Google Scholar 

  12. Gronqvist, S., Rantanen, K., Alen, R., Mattinen, M. L., Buchert, J., & Viikari, L. (2006). Laccase-catalysed functionalisation of TMP with tyramine. Holzforschung, 60, 503–508.

    Article  CAS  Google Scholar 

  13. Gronqvist, S., Viikari, L., Niku-Paavola, M. L., Orlandi, M., Canevali, C., & Buchert, J. (2005). Oxidation of milled wood lignin with laccase, tyrosinase and horseradish peroxidase. Applied Microbiology and Biotechnology, 67, 489–494.

    Article  CAS  Google Scholar 

  14. Heinfling, A., Martinez, M. J., Martinez, A. T., Bergbauer, M., & Szewzyk, U. (1998). Purification and characterization of peroxidases from the dye-decolorizing fungus Bjerkandera adusta. FEMS Microbiology Letters, 165, 43–50.

    Article  CAS  Google Scholar 

  15. Huttermann, A., Kharazipour, A., Schindel, K., Fastenrath, M., Noetzold, S., Schroeter, M., Huttermann, J., Huttermann, A. H., von Kiedrowski, G., Baumberger, S., Lapierre, C. and Monties, B. (1998) Enzymatic reactions of activated lignin with nucleophiles as a basis for the design of compound materials with lignin. In: 7th International Conference on Biotechnology in the Pulp and Paper Industry, Vol A, A207-A209.

  16. Kharazipour, A., Bergmann, K., Nonninger, K., & Huttermann, A. (1998). Properties of fibre boards obtained by activation of the middle lamella lignin of wood fibres with peroxidase and H2O2 before conventional pressing. Journal of Adhesion Science and Technology, 12, 1045–1053.

    Article  CAS  Google Scholar 

  17. Kudanga, T., Prasetyo, E. N., Sipilä, J., Nyanhongo, G. S., & Guebitz, G. M. (2010). Chemo-enzymatic functionalisation of lignocellulose materials using oxiranes. Process Biochemistry, 45, 1557–1562.

    Article  CAS  Google Scholar 

  18. Lund, M., Eriksson, M., & Felby, C. (2003). Reactivity of a fungal laccase towards lignin in softwood Kraft pulp. Holzforschung, 57, 21–26.

    Article  CAS  Google Scholar 

  19. Lloret, L., Eibes, G., Lu-Chau, T. A., Moreira, M. T., Feijoo, G., & Lema, J. M. (2010). Laccase-catalyzed degradation of anti-inflammatories and estrogens. Biochemical Engineering Journal, 51, 124–131.

    Article  CAS  Google Scholar 

  20. Mai, C., Kues, U., & Militz, H. (2004). Biotechnology in the wood industry. Applied Microbiology and Biotechnology, 63, 477–494.

    Article  CAS  Google Scholar 

  21. Martínez, A. T. (2002). Molecular biology and structure-function of lignin- degrading heme peroxidases. Enzyme and Microbial Technology, 30, 425–444.

    Article  Google Scholar 

  22. Merdy, P., Guillon, E., & Aplincourt, M. (2002). Iron and manganese surface complex formation with extracted lignin. Part 1: adsorption isotherm experiments and EPR spectroscopy analysis. New Journal of Chemistry, 26, 1638–1645.

    Article  CAS  Google Scholar 

  23. Mester, T., de Jong, E., & Field, J. A. (1995). Manganese regulation of veratryl alcohol in white rot fungi and its indirect effect on lignin peroxidase. Applied and Environmental Microbiology, 61, 1881–1887.

    CAS  Google Scholar 

  24. Mielgo, I., López, C., Moreira, M. T., Feijoo, G., & Lema, J. M. (2003). Oxidative degradation of azo dyes by manganese peroxidase under optimized conditions. Biotechnology Progress, 19, 325–331.

    Article  CAS  Google Scholar 

  25. R_Development_Core_Team. (2009). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  26. Suurnäkki, A., Oksanen, T., Orlandi, M., Zoia, L., Canevali, C., & Viikari, L. (2010). Factors affecting the activation of pulps with laccase. Enzyme and Microbial Technology, 46, 153–158.

    Article  Google Scholar 

  27. Taboada-Puig, R., Lú-Chau, T., Eibes, G., Moreira, M. T., Feijoo, G., & Lema, J. M. (2011). Biocatalytic generation of Mn(III)-chelate as a chemical oxidant of different environmental contaminants. Biotechnology Progress, 27. doi:10.1002/btpr.1585.

  28. Taboada-Puig, R., Lú-Chau, T., Moreira, M. T., Feijoo, G., Martínez, M. J., & Lema, J. M. (2011). A new strain of Bjerkandera sp. production, purification and characterization of versatile peroxidase. World Journal of Microbiology and Biotechnology, 27, 115–122.

    Article  CAS  Google Scholar 

  29. Tien, M., & Kirk, T. K. (1988). Lignin peroxidase of Phanerochaete chrysosporium. Methods in Enzymology, 161, 238–249.

    Article  CAS  Google Scholar 

  30. Tsuge, H., Natsuaki, O., & Ohashi, K. (1975). Purification, properties, and molecular features of glucose oxidase from Aspergillus niger. Journal of Biochemistry, 78, 835–843.

    CAS  Google Scholar 

  31. Unbehaun, H., Konig, S., Spindler, D., & Kerns, G. (2008). Enzymatic modification of lignocellulosic substances for the production of fiberboards. Moscow University Chemistry Bulletin, 63, 126–130.

    Article  Google Scholar 

  32. van de Pas, D., Hickson, A., Donaldson, L., Lloyd-Jones, G., Tamminen, T., Fernyhough, A., & Mattinen, M.-L. (2011). Characterization of fractionated lignins polymerized by fungal laccases. Bioresources, 6, 1105–1121.

    Google Scholar 

  33. Wesenberg, D., Kyriakides, I., & Agathos, S. N. (2003). White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnology Advances, 22, 161–187.

    Article  CAS  Google Scholar 

  34. Widsten, P., Laine, J. E., Qvintus-Leino, P., & Tuominen, S. (2002). Effect of high-temperature defibration on the chemical structure of hardwood. Holzforschung, 56, 51–59.

    Article  CAS  Google Scholar 

  35. Widsten, P., Laine, J. E., & Tuominen, S. (2002). Radical formation on laccase treatment of wood defibrated at high temperatures—part 1. Studies with hardwood fibers. Nordic Pulp and Paper Research Journal, 17, 139–146.

    Article  CAS  Google Scholar 

  36. Widsten, P., Tuominen, S., Qvintus-Leino, P., & Laine, J. E. (2004). The influence of high defibration temperature on the properties of medium-density fiberboard (MDF) made from laccase-treated softwood fibers. Wood Science and Technology, 38, 521–528.

    Article  CAS  Google Scholar 

  37. Yordanov, N. D., Gancheva, V., & Georgieva, E. (2002). EPR and UV spectroscopic study of table sugar as a high-dose dosimeter. Radiation Physics and Chemistry, 65, 269–276.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Spanish project CTQ2010-20258 and the European project EUI2008-03703. R. Taboada-Puig would like to express his gratitude to the Spanish Ministry of Science and Innovation for his financial support (BES-2008-006977). T. Lú-Chau thanks the Galician Government (I. Barreto program) for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Taboada-Puig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taboada-Puig, R., Lú-Chau, T.A., Moreira, M.T. et al. Activation of Kraft Lignin by an Enzymatic Treatment with a Versatile Peroxidase from Bjerkandera sp. R1. Appl Biochem Biotechnol 169, 1262–1278 (2013). https://doi.org/10.1007/s12010-012-0023-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0023-z

Keywords

Navigation