Skip to main content

Advertisement

Log in

Characterization of a Recombinant Flocculent Saccharomyces cerevisiae Strain that Co-ferments Glucose and Xylose: I. Influence of the Ratio of Glucose/Xylose on Ethanol Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Glucose/xylose mixtures (90 g/L total sugar) were evaluated for their effect on ethanol fermentation by a recombinant flocculent Saccharomyces cerevisiae, MA-R4. Glucose was utilized faster than xylose at any ratio of glucose/xylose, although MA-R4 can simultaneously co-ferment both sugars. A high percentage of glucose can increase cell biomass production and therefore increase the rate of glucose utilization (1.224 g glucose/g biomass/h maximum) and ethanol formation (0.493 g ethanol/g biomass/h maximum). However, the best ratio of glucose/xylose for the highest xylose consumption rate (0.209 g xylose/g biomass/h) was 2:3. Ethanol concentration and yield increased and by-product (xylitol, glycerol, and acetic acid) concentration decreased as the proportion of glucose increased. The maximum ethanol concentration was 41.6 and 21.9 g/L after 72 h of fermentation with 90 g/L glucose and 90 g/L xylose, respectively, while the ethanol yield was 0.454 and 0.335 g/g in 90 g/L glucose and 90 g/L xylose media, respectively. High ethanol yield when a high percentage of glucose is available is likely due to decreased production of by-products, such as glycerol and acetic acid. These results suggest that ethanol selectivity is increased when a higher proportion of glucose is available and reduced when a higher proportion of xylose is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jordan, D. B., Bowman, M. J., Braker, J. D., Dien, B. S., Hector, R. E., Lee, C. C., et al. (2012). Biochemical Journal, 442, 241–252.

    Article  CAS  Google Scholar 

  2. Balat, M., Balat, H., & Öz, C. (2008). Progress in Energy and Combustion Science, 34, 551–573.

    Article  CAS  Google Scholar 

  3. Chen, Y. (2011). Journal of Industrial Microbiology & Biotechnology, 38, 581–597.

    Article  CAS  Google Scholar 

  4. Taniguchi, M., & Tanaka, T. (2004). Advances in Biochemical Engineering/Biotechnology, 90, 35–62.

    Article  CAS  Google Scholar 

  5. Olsson, L., & Hahn-Hägerdal, B. (1993). Process Biochemistry, 28, 249–257.

    Article  CAS  Google Scholar 

  6. Cai, Z., Zhang, B., & Li, Y. (2012). Biotechnology Journal, 7, 34–46.

    Article  CAS  Google Scholar 

  7. Madhavan, A., Srivastava, A., Kondo, A., & Bisaria, V. S. (2012). Critical Reviews in Biotechnology, 32, 22–48.

    Article  CAS  Google Scholar 

  8. Matsushika, A., Liu, Z. L., Sawayama, S., & Moon, J. (2012). Microbiology Monographs, vol. 22. In Z. L. Liu (Ed.), Microbial stress tolerance for biofuels (pp. 137–160). Heidelberg: Springer.

    Chapter  Google Scholar 

  9. Matsushika, A., Inoue, H., Kodaki, T., & Sawayama, S. (2009). Applied Microbiology and Biotechnology, 84, 37–53.

    Article  CAS  Google Scholar 

  10. Van Vleet, J. H., & Jeffries, T. W. (2009). Current Opinion in Biotechnology, 20, 300–306.

    Article  Google Scholar 

  11. Matsushika, A., Inoue, H., Murakami, K., Takimura, O., & Sawayama, S. (2009). Bioresource Technology, 100, 2392–2398.

    Article  CAS  Google Scholar 

  12. Matsushika, A., Inoue, H., Watanabe, S., Kodaki, T., Makino, K., & Sawayama, S. (2009). Applied and Environmental Microbiology, 75, 3818–3822.

    Article  CAS  Google Scholar 

  13. Sunitha, K., Lee, J. K., & Oh, T. K. (1999). Bioprocess and Biosystems Engineering, 21, 477–481.

    CAS  Google Scholar 

  14. Silva, J. P., Mussatto, S. I., & Roberto, I. C. (2010). Applied Biochemistry and Biotechnology, 162, 1306–1315.

    Article  CAS  Google Scholar 

  15. Matsushika, A., & Sawayama, S. (2010). Applied Biochemistry and Biotechnology, 162, 1952–1960.

    Article  CAS  Google Scholar 

  16. Kuriyama, H., Seiko, Y., Murakami, T., Kobayashi, H., & Sonoda, Y. (1985). Journal of Fermentation Technology, 63, 159–165.

    CAS  Google Scholar 

  17. Matsushika, A., Watanabe, S., Kodaki, T., Makino, K., Inoue, H., Murakami, K., et al. (2008). Applied Microbiology and Biotechnology, 81, 243–255.

    Article  CAS  Google Scholar 

  18. Govindaswamy, S., & Vane, L. M. (2007). Bioresource Technology, 98, 677–685.

    Article  CAS  Google Scholar 

  19. Agbogbo, F. K., Coward-Kelly, G., Torry-Smith, M., & Wenger, K. S. (2006). Process Biochemistry, 41, 2333–2336.

    Article  CAS  Google Scholar 

  20. Zhao, L., Zhang, X., & Tan, T. (2008). Biomass and Bioenergy, 32, 1156–1161.

    Article  CAS  Google Scholar 

  21. Hamacher, T., Becker, J., Gárdonyi, M., Hahn-Hägerdal, B., & Boles, E. (2002). Microbiology, 148, 2783–2788.

    CAS  Google Scholar 

  22. Matsushika, A., Goshima, T., Fujii, T., Inoue, H., Sawayama, S., & Yano, S. (2012). Enzyme and Microbial Technology, 51, 16–25.

    Article  CAS  Google Scholar 

  23. Matsushika, A., & Sawayama, S. (2012). Applied Biochemistry and Biotechnology, 168, 2094–2104.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Tamotsu Hoshino, Dr. Shinichi Yano, Dr. Kazuhiko Ishikawa, Dr. Katsuji Murakami, Dr. Osamu Takimura, Dr. Hiroyuki Inoue, Dr. Kenichiro Tsukahara, Dr. Tatsuya Fujii and Dr. Tetsuya Goshima (AIST) for helpful discussion, and Ms. Maiko Kato for her technical assistance. This study was supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinori Matsushika.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsushika, A., Sawayama, S. Characterization of a Recombinant Flocculent Saccharomyces cerevisiae Strain that Co-ferments Glucose and Xylose: I. Influence of the Ratio of Glucose/Xylose on Ethanol Production. Appl Biochem Biotechnol 169, 712–721 (2013). https://doi.org/10.1007/s12010-012-0013-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0013-1

Keywords

Navigation