Skip to main content
Log in

ANCUT2, an Extracellular Cutinase from Aspergillus nidulans Induced by Olive Oil

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cutinases are versatile carboxylic ester hydrolases with great potential in many biocatalytic processes, including biodiesel production. Genome sequence analysis of the model organism Aspergillus nidulans reveals four genes encoding putative cutinases. In this work, we purified and identified for the first time a cutinase (ANCUT2) produced by A. nidulans. ANCUT2 is a 29-kDa protein which consists of 255 amino acid residues. Comparison of the amino acid sequence of ANCUT2 with other microbial cutinase sequences revealed a high degree of homology with other fungal cutinases as well as new features, which include a serine-rich region and conserved cysteines. Cutinase production with different lipidic and carbon sources was also explored. Enzyme activity was induced by olive oil and some triacylglycerides and fatty acids, whereas it was repressed by glucose (1%) and other sugars. In some conditions, a 22-kDa post-translational processing product was also detected. The cutinase nature of the enzyme was confirmed after degradation of apple cutin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CEH:

Carboxylic ester hydrolase

CEHM:

Carboxylic ester hydrolase medium

h:

Hours

RT:

Room temperature

ATR:

Attenuated total reflectance

DMSO:

Dimethyl sulfoxide

NMWCO:

Nominal molecular weight cut-off

TLC:

Thin-layer chromatography

SDS:

Sodium dodecyl sulfate

SDS–PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

PVDF:

Polyvinylidene fluoride

References

  1. Webb, E. C. (1992). In International Union of Biochemistry and Molecular Biology, (Eds). San Diego: Academic. 0–12: 227164–227165.

  2. Purdi, R. E., & Kolattukudy, P. E. (1975). Biochemistry, 14(13), 2824–2831.

    Article  Google Scholar 

  3. Carvalho, C. M. L., Aires-Barros, M. R., & Cabral, J. M. (1999). Biotechnology and Bioengineering, 66(1), 17–34.

    Article  CAS  Google Scholar 

  4. Panda, T., & Gowrishankar, B. S. (2005). Applied Microbiology and Biotechnology, 67, 160–169.

    Article  CAS  Google Scholar 

  5. Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Biotechnology Advances, 19(8), 627–662.

    Article  CAS  Google Scholar 

  6. Dutta, K., Sen, S., & Veeranki, V. D. (2009). Process Biochemistry, 44(2), 127–134.

    Article  CAS  Google Scholar 

  7. Badenes, S. M., Lemos, F., & Cabral, J. M. (2010). Biotechnology Letters, 32, 399–403.

    Article  CAS  Google Scholar 

  8. Badenes, S. M., Lemos, F., & Cabral, J. M. (2011). Biotechnology and Bioengineering, 108(6), 1279–1289.

    Article  CAS  Google Scholar 

  9. Wang, X., Liu, X., Zhao, C., Ding, Y., & Xu, P. (2011). Bioresource Technology, 102(10), 6352–6355.

    Article  CAS  Google Scholar 

  10. Kawasaki, L., Farrés, A., & Aguirre, J. (1995). Experimental Mycology, 19(1), 81–85.

    Article  CAS  Google Scholar 

  11. García-Lepe, R., Nuero, O. M., Reyes, F., & Santamaría, F. (1997). Letters in Applied Microbiology, 25, 127–130.

    Article  Google Scholar 

  12. Leger, R. J., St. Joshi, L., & Roberts, D. (1997). Microbiology, 143, 1983–1992.

    Article  Google Scholar 

  13. Mayordomo, I., Randez-Gil, F., & Prieto, J. (2000). Journal of Agricultural and Food Chemistry, 48, 105–109.

    Article  CAS  Google Scholar 

  14. Peña-Montes, C., Gonzalez, A., Castro-Ochoa, D., & Farrés, A. (2008). Applied Microbiology and Biotechnology, 78(4), 603–612.

    Article  Google Scholar 

  15. Käfer, E. (1977). Advances in Genetics, 19, 33–131.

    Article  Google Scholar 

  16. Walton, T. J., & Kolattukudy, P. E. (1972). Biochemistry, 11(10), 1885–1897.

    Article  CAS  Google Scholar 

  17. Järvinen, R., Silvestre, A. J., Holopainen, U., Kaimainen, M., Nyyssölä, A., Gil, A. M., Pascoal-Neto, C., Lehtinen, P., Buchert, J., & Kallio, H. (2009). Journal of Agricultural and Food Chemistry, 57(19), 9016–9027.

    Article  Google Scholar 

  18. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  19. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  20. Nielsen, H., Engelbrecht, J., Brunak, S., & von Heijne, G. (1997). Protein Engineering, 10, 1–6.

    Article  CAS  Google Scholar 

  21. Blom, N., Gammeltoft, S., & Brunak, S. (1999). Journal of Molecular Biology, 294(5), 1351–1362.

    Article  CAS  Google Scholar 

  22. Pearson, W. R. (1990). Methods in Enzymology, 183, 63–98.

    Article  CAS  Google Scholar 

  23. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thomson, J. D., Gibson, T. J., & Higgings, D. G. (2007). Bioinformatics, 23, 2947–2948.

    Article  CAS  Google Scholar 

  24. Saitou, N., & Nei, M. (1987). Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  25. Felsenstein, J. (1985). Evolution, 39, 783–791.

    Article  Google Scholar 

  26. Jones, D. T., Taylor, W. R., & Thornton, J. M. (1992). CABIOS, 8, 275–282.

    CAS  Google Scholar 

  27. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  28. Lin, T. S., & Kolattukudy, P. E. (1978). Journal of Bacteriology, 133(2), 942–951.

    CAS  Google Scholar 

  29. Pio, T. F., & Macedo, G. A. (2007). Enzyme and Microbial Technology, 41, 613–619.

    Article  CAS  Google Scholar 

  30. Fett, W. F., Wijey, C., Moreau, R. A., & Osman, S. F. (1999). Journal of Applied Microbiology, 86, 561–568.

    Article  CAS  Google Scholar 

  31. Fett, W. F., Wijey, C., Moreau, R. A., & Osman, S. F. (2000). Letters in Applied Microbiology, 31, 25–29.

    Article  CAS  Google Scholar 

  32. Sarkar, S., Sreekanth, B., Kant, S., Banerjee, R., & Bhattacharyya, B. C. (1998). Bioprocess Engineering, 19, 29–32.

    Article  CAS  Google Scholar 

  33. Henriette, C., Zinebi, S., Aumaitre, M. F., Petitdemange, E., & Petitdemange, H. (1993). Journal of Industrial Microbiology, 12, 129–135.

    Article  CAS  Google Scholar 

  34. Martinez, P., Christen, P., & Farrés, A. (1993). Journal of Fermentation and Bioengineering, 76(2), 94–97.

    Article  Google Scholar 

  35. Bauer, S., Vasu, P., Person, S., Mort, A. J., & Somerville, C. R. (2006). Proceedings of the National Academy of Sciences of the United States of America, 103(30), 11417–11422.

    Article  CAS  Google Scholar 

  36. Lin, T., & Kolattukudy, P. E. (1980). European Journal of Biochemistry, 106, 341–351.

    Article  CAS  Google Scholar 

  37. Wang, G. Y., Michailides, T. J., Hammock, B. D., Lee, Y. M., & Bostock, R. M. (2002). Fungal Genetics and Biology, 35(3), 261–276.

    Article  CAS  Google Scholar 

  38. Kanazawa, T., Keeler, M., & Vartikovski, L. (1994). Cell Immunology, 156, 378–388.

    Article  CAS  Google Scholar 

  39. Liu, Z., Gosser, Y., Baker, P. J., Ravee, Y., Lu, Z., Alemu, G., Li, H., Butterfoss, G. L., Kong, X. P., Gross, R., & Montclare, J. K. (2009). Journal of the American Chemical Society, 131(43), 15711–15716.

    Article  CAS  Google Scholar 

  40. Galagan, J. E., et al. (2005). Nature, 438, 1105–1115.

    Article  CAS  Google Scholar 

  41. Wang, G. Y., Michailides, T. J., Hammock, B. D., Lee, Y. M., & Bostock, R. M. (2000). Archives of Biochemistry and Biophysics, 382, 31–38.

    Article  CAS  Google Scholar 

  42. Fan, C.-Y., & Köller, W. (1998). FEMS Microbiology Letters, 158, 33–38.

    Article  CAS  Google Scholar 

  43. Pacchiano, R. A., Sohn, W., Chlanda, V. L., Garbow, J. R., & Stark, R. E. (1993). Journal of Agricultural and Food Chemistry, 41, 78–83.

    Article  CAS  Google Scholar 

  44. Heredia-Guerrero, J. A., Heredia, A., García-Segura, R., & Benitez, J. J. (2009). Polymer, 50, 5633–5637.

    Article  CAS  Google Scholar 

  45. Li, S., He, B., Bai, Z., & Ouyang, P. (2009). Journal of Molecular Catalysis B: Enzymatic, 56(2–3), 85–88.

    Article  CAS  Google Scholar 

  46. Del Rio, J. C., & Hatcher, P. G. (1998). Organic Geochemistry, 29(5–7), 1441–1451.

    Google Scholar 

Download references

Acknowledgments

Financial support for this project was obtained from PAPIIT–DGAPA–UNAM IN2148092. Denise Castro received a scholarship from CONACyT. We thank Dr. César Batista, from the Proteomics Unit, Biotechnology Institute, UNAM for LC–MS/MS Analysis and USAI Department, Chemistry Faculty, UNAM for infrared spectroscopy analysis. We appreciate the help of C. Warden for his assistance with the English revision of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amelia Farrés.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro-Ochoa, D., Peña-Montes, C., González-Canto, A. et al. ANCUT2, an Extracellular Cutinase from Aspergillus nidulans Induced by Olive Oil. Appl Biochem Biotechnol 166, 1275–1290 (2012). https://doi.org/10.1007/s12010-011-9513-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9513-7

Keywords

Navigation