Skip to main content

Advertisement

Log in

Biogas Production Potential and Kinetics of Microwave and Conventional Thermal Pretreatment of Grass

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pretreatment methods play an important role in the improvement of biogas production from the anaerobic digestion of energy grass. In this study, conventional thermal and microwave methods were performed on raw material, namely, Pennisetum hybrid, to analyze the effect of pretreatment on anaerobic digestion by the calculation of performance parameters using Logistic function, modified Gompertz equation, and transference function. Results indicated that thermal pretreatment improved the biogas production of Pennisetum hybrid, whereas microwave method had an adverse effect on the performance. All the models fit the experimental data with R 2 > 0.980, and the Reaction Curve presented the best agreement in the fitting process. Conventional thermal pretreatment showed an increasing effect on maximum production rate and total methane produced, with an improvement of around 7% and 8%, respectively. With regard to microwave pretreatment, maximum production rate and total methane produced decreased by 18% and 12%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jagadabhi, P. S., Kaparaju, P., & Rintala, J. (2011). Two-stage anaerobic digestion of tomato, cucumber, common reed and grass silage in leach-bed reactors and upflow anaerobic sludge blanket reactors. Bioresource Technology, 102(7), 4726–4733.

    Article  CAS  Google Scholar 

  2. Somerville, C., Youngs, H., Taylor, C., Davis, S. C., & Long, S. P. (2010). Feedstocks for lignocellulosic biofuels. Science, 329(5993), 790–792.

    Article  CAS  Google Scholar 

  3. Nizami, A. S., Korres, N. E., & Murphy, J. D. (2009). Review of the integrated process for the production of grass biomethane. Environmental Science & Technology, 43(22), 8496–8508.

    Article  CAS  Google Scholar 

  4. Lewandowski, I., Scurlock, J. M. O., Lindvall, E., & Christou, M. (2003). The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy, 25(4), 335–361.

    Article  Google Scholar 

  5. Prochnow, A., Heiermann, M., Plochl, M., Linke, B., Idler, C., Amon, T., & Hobbs, P. J. (2009). Bioenergy from permanent grassland—a review: 1. Biogas. Bioresource Technology, 100(21), 4931–4944.

    Article  CAS  Google Scholar 

  6. Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9(9), 1621–1651.

    Article  CAS  Google Scholar 

  7. Sun, Y. M., Li, L. H., Li, D., Ma, L. L., Yuan, Z. H., & Kong, X. Y. (2010). Effect of temperature and solid concentration on anaerobic digestion of rice straw in South China. International Journal of Hydrogen Energy, 35(13), 7261–7266.

    Article  Google Scholar 

  8. Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10–18.

    Article  CAS  Google Scholar 

  9. Kratky, L., & Jirout, T. (2011). Biomass size reduction machines for enhancing biogas production. Chemical Engineering and Technology, 34(3), 391–399.

    Article  CAS  Google Scholar 

  10. Zhu, S. D., Wu, Y. X., Yu, Z. N., Liao, J. T., & Zhang, Y. (2005). Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochemistry, 40(9), 3082–3086.

    Article  CAS  Google Scholar 

  11. Liu, Y., Wand, G., Pu, C., & Liu, Z. (2010). Effect of bisulfite pretreatment on enzymatic hydrolysis of corn stalk. Chemistry and Industry of Forest Products, 30(4), 73–77.

    Google Scholar 

  12. Cara, C., Ruiz, E., Oliva, J. M., Saez, F., & Castro, E. (2008). Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresource Technology, 99(6), 1869–1876.

    Article  CAS  Google Scholar 

  13. Gao, M. A., Xu, F., Li, S. R., Ji, X. C., Chen, S. F., & Zhang, D. Q. (2010). Effect of SC-CO2 pretreatment in increasing rice straw biomass conversion. Biosystems Engineering, 106(4), 470–475.

    Article  Google Scholar 

  14. Toteci, I., Kennedy, K. J., & Droste, R. L. (2009). Evaluation of continuous mesophilic anaerobic sludge digestion after high temperature microwave pretreatment. Water Research, 43(5), 1273–1284.

    Article  Google Scholar 

  15. Eskicioglu, C., Kennedy, K. J., & Droste, R. L. (2007). Enhancement of batch waste activated sludge digestion by microwave pretreatment. Water Environment Research, 79(11), 2304–2317.

    Article  CAS  Google Scholar 

  16. Marin, J., Kennedy, K. J., & Eskicioglu, C. (2011). Enhanced solubilization and anaerobic biodegradability of source-separated kitchen waste by microwave pre-treatment. Waste Management & Research, 29(2), 208–218.

    Article  CAS  Google Scholar 

  17. Lo, K. V., Yu, Y., Lo, I. W., & Liao, P. H. (2010). Treatment of dairy manure using the microwave enhanced advanced oxidation process under a continuous mode operation. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 45(8), 804–809.

    Article  Google Scholar 

  18. Himmelsbach, J. N., Raman, D. R., Anex, R. P., Burns, R. T., & Faulhabcr, C. R. (2010). Effect of ammonia soaking pretreatment and enzyme addition on biochemical methane potential of switchgrass. Transactions of the ASABE, 53(6), 1921–1927.

    Google Scholar 

  19. Masse, D., Gilbert, Y., Savoie, P., Belanger, G., Parent, G., & Babineau, D. (2010). Methane yield from switchgrass harvested at different stages of development in Eastern Canada. Bioresource Technology, 101(24), 9536–9541.

    Article  CAS  Google Scholar 

  20. Mahnert, P., & Linke, B. (2009). Kinetic study of biogas production from energy crops and animal waste slurry: Effect of organic loading rate and reactor size. Environmental Technology, 30(1), 93–99.

    Article  CAS  Google Scholar 

  21. Malafaia, P. A. M., Filho, S. C. V., & Vieira, R. A. M. (1999). Kinetic parameters of ruminal degradation estimated with a non-automated system to measure gas production. Livestock Production Science, 58(1), 65–73.

    Article  Google Scholar 

  22. Pommier, S., Chenu, D., Quintard, M., & Lefebvre, X. (2007). A logistic model for the prediction of the influence of water on the solid waste methanization in landfills. Biotechnology and Bioengineering, 97(3), 473–482.

    Article  CAS  Google Scholar 

  23. Gadhamshetty, V., Arudchelvam, Y., Nirmalakhandan, N., & Johnson, D. C. (2010). Modeling dark fermentation for biohydrogen production: ADM1-based model vs. Gompertz model. International Journal of Hydrogen Energy, 35(2), 479–490.

    Article  CAS  Google Scholar 

  24. Redzwan, G., & Banks, C. (2004). The use of a specific function to estimate maximum methane production in a batch-fed anaerobic reactor. Journal of Chemical Technology and Biotechnology, 79(10), 1174–1178.

    Article  CAS  Google Scholar 

  25. Donoso-Bravo, A., Perez-Elvira, S. I., & Fdz-Polanco, F. (2010). Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes. Chemical Engineering Journal, 160(2), 607–614.

    Article  CAS  Google Scholar 

  26. Seppala, M., Paavola, T., Lehtomaki, A., & Rintala, J. (2009). Biogas production from boreal herbaceous grasses—specific methane yield and methane yield per hectare. Bioresource Technology, 100(12), 2952–2958.

    Article  CAS  Google Scholar 

  27. Lehtomaki, A., Huttunen, S., Lehtinen, T., & Rintala, J. A. (2008). Anaerobic digestion of grass silage in batch leach bed processes for methane production. Bioresource Technology, 99(8), 3267–3278.

    Article  CAS  Google Scholar 

  28. Pauss, A., Jackowiak, D., Frigon, J. C., Ribeiro, T., & Guiot, S. (2011). Enhancing solubilisation and methane production kinetic of switchgrass by microwave pretreatment. Bioresource Technology, 102(3), 3535–3540.

    Article  Google Scholar 

  29. Wang, Q., Noguchi, C., Hara, Y., Sharon, C., Kakimoto, K., & Kato, Y. (1997). Studies on anaerobic digestion mechanism: influence of pretreatment temperature on biodegradation of waste activated sludge. Environmental Technology, 18(10), 999–1008.

    Article  CAS  Google Scholar 

  30. Laser, M., Schulman, D., Allen, S. G., Lichwa, J., Antal, M. J., & Lynd, L. R. (2002). A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresource Technology, 81(1), 33–44.

    Article  CAS  Google Scholar 

  31. Zhu, J. Y., Wan, C. X., & Li, Y. B. (2010). Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresource Technology, 101(19), 7523–7528.

    Article  CAS  Google Scholar 

  32. Altas, L. (2009). Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge. Journal of Hazardous Materials, 162(2–3), 1551–1556.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the National High Technology Research and Development Program of China (Project 2009AA10Z405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongming Sun.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2359 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Kong, X., Yang, F. et al. Biogas Production Potential and Kinetics of Microwave and Conventional Thermal Pretreatment of Grass. Appl Biochem Biotechnol 166, 1183–1191 (2012). https://doi.org/10.1007/s12010-011-9503-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9503-9

Keywords

Navigation