Advertisement

Applied Biochemistry and Biotechnology

, Volume 166, Issue 4, pp 1047–1056 | Cite as

Kinetics of Alloxan-Induced Inhibition on δ-Aminolevulinate Dehydratase Activity in Mouse Liver Homogenates

  • Verônica B. BritoEmail author
  • Vanderlei Folmer
  • Inês Isabel R. Guerra
  • João Batista T. Rocha
Article
  • 123 Downloads

Abstract

This study evaluated the effects of alloxan on the kinetics properties of the δ-aminolevulinate dehydratase (δ-ALA-D) using mouse liver homogenates. δ-ALA-D is an important sulfhydryl enzyme that catalyses the second step in heme biosynthesis and is commonly diminished in experimental and human diabetes. Despite the known effects of alloxan in models of experimental diabetes, there are no data in the literature demonstrating the effects of alloxan on the kinetics properties of the δ-ALA-D. The results showed that alloxan (1.25–20 μM) caused a concentration-dependent inhibition of hepatic δ-ALA-D activity. The inhibition constant (K i ) for alloxan-induced inhibition on δ-ALA-D was 3.64 μM. The alloxan (5 μM) caused a decrease in V max (65.8%) and in K m (53.1%), which is suggestive of an uncompetitive inhibition of enzyme. In addition, dithiothreitol (700 and 1,000 μM) completely prevented the δ-ALA-D activity inhibition induced by 10 and 20 μM alloxan. Similar protection was obtained in the presence of 2,000 μM glutathione. Therefore, this work showed that the inhibition of hepatic δ-ALA-D activity can be obtained in vitro at low micromolar levels of alloxan, and can also be prevented by reducing agents. Moreover, these results may help to understand the abnormalities in heme pathway found in models of experimental diabetes in vivo.

Keywords

δ-ALA-D Alloxan Diabetes Kinetics Mice 

Notes

Acknowledgements

This study was supported by FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).

References

  1. 1.
    Sassa, S. (1998). Seminars in Liver Disease, 18, 5–101.CrossRefGoogle Scholar
  2. 2.
    Sterling, K., Silver, M., & Ricketts, H. T. (1949). Archives of Internal Medicine, 84, 965–975.CrossRefGoogle Scholar
  3. 3.
    Burnham, T. K., & Fosnaugh, R. P. (1961). Archives of Dermatology, 83, 717–722.CrossRefGoogle Scholar
  4. 4.
    Stein, J. A., & Tschudy, D. P. (1970). Medicine (Baltimore), 49, 1–16.Google Scholar
  5. 5.
    Goerz, G., & Korda, S. (1977). Zeits Hautkrank, 52, 1165–1174.Google Scholar
  6. 6.
    Székely, E., Bor, M., Tasnádi, G., Várnai, K., Almási, A., & Blázovic, A. (2006). Clinical Hemorheology and Microcirculation, 35, 387–396.Google Scholar
  7. 7.
    Grossman, M. E., Bickers, D. R., Poh-Fitzpatrick, M. B., Deleo, V. A., & Harber, L. C. (1979). American Journal of Medicine, 67, 277–286.CrossRefGoogle Scholar
  8. 8.
    Lisi, P., Santeusanio, F., & Lombardi, G. (1983). Dermatologica, 166, 287–293.CrossRefGoogle Scholar
  9. 9.
    Sibbald, R. G., & Schachter, R. K. (1984). International Journal of Dermatology, 23, 567–584.CrossRefGoogle Scholar
  10. 10.
    Mengistu, M. (1987). Tropical and Geographical Medicine, 39, 361–365.Google Scholar
  11. 11.
    Magnin, P. H., & Lenczner, J. M. (1990). Argentina de Dermatolologia, 71, 45–47.Google Scholar
  12. 12.
    Santamaría, V. G., & Barrios, E. G. (2001). Revista del Centro Dermatológico Pascua, 10, 1–12.Google Scholar
  13. 13.
    Caballero, F. A., Gerez, E. N., Polo, C. F., Vazquez, E. S., & Batlle, A. M. C. (1998). General Pharmacology, 31, 441–445.CrossRefGoogle Scholar
  14. 14.
    Folmer, V., Soares, J. C. M., & Rocha, J. B. T. (2002). International Journal of Biochemistry and Cell Biology, 34, 1279–1285.CrossRefGoogle Scholar
  15. 15.
    Folmer, V., Soares, J. C. M., Gabriel, D., & Rocha, J. B. T. (2003). Journal of Nutrition, 133, 2165–2170.Google Scholar
  16. 16.
    Brito, V. B., Folmer, V., Soares, J. C., Silveira, I. D., & Rocha, J. B. (2007). Nutrition, 23, 818–826.CrossRefGoogle Scholar
  17. 17.
    Brito, V. B., da Rocha, J. B. T., Puntel, G. O., da Luz, S. C. A., Barbosa, N. B. V., de Carvalho, N. R., et al. (2011). Experimental and Toxicologic Pathology, 63, 443–451.CrossRefGoogle Scholar
  18. 18.
    Sassa, S. (1982). Enzyme, 28, 133–145.Google Scholar
  19. 19.
    Shemim, D. (1976). Philosophical Transactions of the Royal Society of London, Series B, 273, 109–115.CrossRefGoogle Scholar
  20. 20.
    Tsukamoto, I., Yoshinaga, T., & Sano, S. (1979). Biochimica et Biophysica Acta, 570, 167–178.Google Scholar
  21. 21.
    Farina, M., Brandão, R., Lara, F. S., Soares, F. A., Souza, D. O., & Rocha, J. B. T. (2003). Toxicology Letters, 139, 55–66.CrossRefGoogle Scholar
  22. 22.
    Perottoni, J., Meotti, F. C., Folmer, V., Pivetta, L., Nogueira, C. W., Zeni, G., et al. (2005). Environmental Toxicology and Pharmacology, 19, 239–248.CrossRefGoogle Scholar
  23. 23.
    Spencer, P., & Jordan, P. M. (1994). Biochemical Journal, 300, 373–381.Google Scholar
  24. 24.
    Spencer, P., & Jordan, P. M. (1995). Biochemical Journal, 305, 151–158.Google Scholar
  25. 25.
    Valentini, J., Grotto, D., Paniz, C., Roehrs, M., Burg, G., & Garcia, S. C. (2008). Biomedicine & Pharmacotherapy, 62, 378–382.CrossRefGoogle Scholar
  26. 26.
    Dunn, J. S., Sheehan, H. L., & McLetchie, N. G. B. (1943). Lancet, 1, 484–487.Google Scholar
  27. 27.
    Lenzen, S., & Panten, U. (1988). Diabetologia, 31, 337–342.CrossRefGoogle Scholar
  28. 28.
    Grankvist, K., Marklund, S. L., Sehlin, J., & Taljedal, I. B. (1979). Biochemical Journal, 182, 17–25.Google Scholar
  29. 29.
    Nukatsuka, M., Sakurai, H., & Kawada, J. (1989). Biochemical and Biophysical Research Communications, 165, 278–283.CrossRefGoogle Scholar
  30. 30.
    Elsner, M., Gurgul-Convey, E., & Lenzen, S. (2008). Antioxidants and Redox Signaling, 10, 691–699.CrossRefGoogle Scholar
  31. 31.
    Lenzen, S. (2008). Diabetologia, 51, 216–226.CrossRefGoogle Scholar
  32. 32.
    Munday, R. (1988). Biochemical Pharmacology, 37, 409–413.CrossRefGoogle Scholar
  33. 33.
    Elsner, M., Gurgul-Convey, E., & Lenzen, S. (2006). Free Radical Biology and Medicine, 41, 825–834.CrossRefGoogle Scholar
  34. 34.
    Winterbourn, C. C., & Munday, R. (1989). Biochemical Pharmacology, 38, 271–277.CrossRefGoogle Scholar
  35. 35.
    Ammon, H. P., & Mark, M. (1985). Cell Biochemistry Function, 3, 157–171.CrossRefGoogle Scholar
  36. 36.
    Boquist, L., & Ericsson, I. (1984). FEBS Letters, 178, 245–248.CrossRefGoogle Scholar
  37. 37.
    Tiedge, M., Krug, U., & Lenzen, S. (1997). Biochimica et Biophysica Acta, 1337, 175–190.CrossRefGoogle Scholar
  38. 38.
    Zhang, X., Liang, W., Mao, Y., Li, H., Yang, Y., & Tan, H. (2009). Biomedicine & Pharmacotherapy, 63, 180–186.CrossRefGoogle Scholar
  39. 39.
    Barbosa, N. B., Rocha, J. B. T., Zeni, G., Emanuelli, T., Beque, M. C., & Braga, A. L. (1998). Toxicology and Applied Pharmacology, 149, 243–253.CrossRefGoogle Scholar
  40. 40.
    Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  41. 41.
    Elsner, M., Tiedge, M., Guldbakke, B., Munday, R., & Lenzen, S. (2002). Diabetologia, 45, 1542–1549.CrossRefGoogle Scholar
  42. 42.
    Leech, R., & Bailey, C. (1945). Journal of Biological Chemistry, 157, 525–542.Google Scholar
  43. 43.
    Bruckmann, G., & Wertheimer, E. (1947). Journal of Biological Chemistry, 168, 241–256.Google Scholar
  44. 44.
    Bhattacharya, S. K., Robson, J. S., & Stewart, C. P. (1956). Biochemical Journal, 62, 12–21.Google Scholar
  45. 45.
    Kiersztan, A., Baranska, A., Hapka, M., Lebiedzinska, M., Winiarska, K., Dudziak, M., et al. (2009). Chemico-Biological Interactions, 177, 161–171.CrossRefGoogle Scholar
  46. 46.
    Szkudelski, T., Kandulska, K., & Okulicz, M. (1998). Physiological Research, 47, 343–346.Google Scholar
  47. 47.
    Grankvist, K., & Marklund, S. L. (1986). International Journal of Biochemistry, 18, 109–113.CrossRefGoogle Scholar
  48. 48.
    Zhang, H., Gao, G., & Brunk, U. T. (1992). Acta Pathologica Microbiologica et Immunologica Scandinavica, 100, 317–325.CrossRefGoogle Scholar
  49. 49.
    Patterson, J. W., Lazarow, A., & Levey, S. (1949). Journal of Biological Chemistry, 177, 197–204.Google Scholar
  50. 50.
    Caballero, F., Gerez, E., Pólo, C., Mompo, O., Vázquez, E., Schultz, R., et al. (1995). Medicina (Buenos Aires), 55, 117–124.Google Scholar
  51. 51.
    Czyzyk, A., & Gregor, A. (1971). Diabetologia, 152, 152–155.CrossRefGoogle Scholar
  52. 52.
    Bitar, M., & Weiner, M. (1984). Diabetes, 33, 37–44.CrossRefGoogle Scholar
  53. 53.
    Djordjevic, V. (1985). Archives Internationales de Physiologie et de Biochimie, 93, 285–290.CrossRefGoogle Scholar
  54. 54.
    Mohamed, A. K., Bierhaus, A., Schiekofer, S., Tritschler, H., Ziegler, R., & Nawroth, P. P. (1999). Biofactors, 10, 157–167.CrossRefGoogle Scholar
  55. 55.
    Wolff, S. P., & Dean, R. T. (1987). Biochemical Journal, 245, 243–250.Google Scholar
  56. 56.
    Fernández-Cuartero, B., Rebollar, J. L., Batlle, A., & Salamanca, R. E. (1999). International Journal of Biochemistry and Cell Biology, 31, 479–488.CrossRefGoogle Scholar
  57. 57.
    Tippett, P. S., & Neet, K. E. (1983). Archives of Biochemistry and Biophysics, 222, 285–298.CrossRefGoogle Scholar
  58. 58.
    Lazarow, A. (1949). Physiological Reviews, 29, 48–74.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Verônica B. Brito
    • 1
    • 2
    Email author
  • Vanderlei Folmer
    • 1
    • 3
  • Inês Isabel R. Guerra
    • 4
  • João Batista T. Rocha
    • 1
  1. 1.Departamento de Química, Centro de Ciências Naturais e ExatasUniversidade Federal de Santa Maria, UFSMSanta MariaBrazil
  2. 2.Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de CiênciasUniversidade de Lisboa, ULLisbonPortugal
  3. 3.Universidade Federal do Pampa, UNIPAMPAUruguaianaBrazil
  4. 4.Faculdade de Farmácia, Universidade de Lisboa, ULLisbonPortugal

Personalised recommendations