Skip to main content
Log in

Solid-State Fermentation of Mortierella isabellina for Lipid Production from Soybean Hull

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Soybean hull, generated from soybean processing, is a lignocellulosic material with limited industrial applications and little market value. This research is exploring a new application of soybean hull to be converted to fungal lipids for biodiesel production through solid-state fermentation. Mortierella isabellina was selected as the oil producer because of its high lipid content at low C/N ratio. Several cultivation factors were investigated, including moisture content, inoculums size, fungal spore age, and nutrient supplements, in an attempt to enhance the lipid production of the solid-state fermentation process. The results showed that lipid production with the increase of the moisture content and the spore age, while decreased as the size of inoculums increased. Nutrients addition (KH2PO4 1.2 mg and MgSO4 0.6 mg/g soybean hull) improved the lipid production. The total final lipid reached 47.9 mg lipid from 1 g soybean hull after the conversion, 3.3-fold higher than initial lipid reserve in the soybean hull. The fatty acid profile analysis indicated that fatty acid content consisted of 30.0% of total lipid, and 80.4% of total fatty acid was C16 and C18. Therefore, lipid production from soybean hull is a possible option to enable soybean hull as a new resource for biodiesel production and to enhance the overall oil production from soybeans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Somerville, C., et al. (2010). Science, 329, 790–792.

    Article  CAS  Google Scholar 

  2. Lynd, L. R., et al. (2002). Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  CAS  Google Scholar 

  3. Steen, E. J., et al. (2010). Nature, 463, 559–U182.

    Article  CAS  Google Scholar 

  4. Kumar, R., Singh, S., & Singh, O. V. (2008). Journal of Industrial Microbiology & Biotechnology, 35, 377–391.

    Article  CAS  Google Scholar 

  5. Fall, R., Phelps, P., & Spindler, D. (1984). Applied and Environmental Microbiology, 47, 1130–1134.

    CAS  Google Scholar 

  6. Kumar, P., et al. (2009). Industrial and Engineering Chemistry Research, 48, 3713–3729.

    Article  CAS  Google Scholar 

  7. Yu, X., et al. (2011). Bioresource Technology, 102, 6134–6140.

    Article  CAS  Google Scholar 

  8. Ratledge, C. (1982). Enzyme and Microbial Technology, 4, 58–60.

    Article  CAS  Google Scholar 

  9. Meng, X., et al. (2009). Renewable Energy, 34, 1–5.

    Article  Google Scholar 

  10. Hoffmeister, D., & Keller, N. P. (2007). Natural Product Reports, 24, 393–416.

    Article  CAS  Google Scholar 

  11. Suzuki, O. Recent trends of oleochemicals by biotechnology. in World conference on oleochemicals. 1990. Kuala lumpur.

  12. Papanikolaou, S., Komaitis, M., & Aggelis, G. (2004). Bioresource Technology, 95, 287–291.

    Article  CAS  Google Scholar 

  13. Fakas, S., et al. (2009). Biomass and Bioenergy, 33, 573–580.

    Article  CAS  Google Scholar 

  14. Graminha, E. B. N., et al. (2008). Animal Feed Science and Technology, 144, 1–22.

    Article  CAS  Google Scholar 

  15. Mitchell, D. A., & Krieger, N. (2006). Solid-state fermentation bioreactors fundamentals of design and operation. Berlin: Springer.

    Book  Google Scholar 

  16. Economou, C. N., et al. (2010). Bioresource Technology, 101, 1385–1388.

    Article  CAS  Google Scholar 

  17. Krishna, C. (2005). Critical Reviews in Biotechnology, 25, 1–30.

    Article  CAS  Google Scholar 

  18. Holker, U., Hofer, M., & Lenz, J. (2004). Applied Microbiology and Biotechnology, 64, 175–186.

    Article  CAS  Google Scholar 

  19. Mitchell, D. A., et al. (2000). Process Biochemistry, 35, 1211–1225.

    Article  CAS  Google Scholar 

  20. Mitchell, D. A., et al. (1999). Process Biochemistry, 35, 167–178.

    Article  CAS  Google Scholar 

  21. Hardin, M. T., Mitchell, D. A., & Howes, T. (2000). Biotechnology and Bioengineering, 67, 274–282.

    Article  CAS  Google Scholar 

  22. Stuart, D. M., & Mitchell, D. A. (2003). Journal of Chemical Technology and Biotechnology, 78, 1180–1192.

    Article  CAS  Google Scholar 

  23. Stuart, D. M., et al. (1999). Biotechnology and Bioengineering, 63, 383–391.

    Article  CAS  Google Scholar 

  24. Ashley, V. M., Mitchell, D. A., & Howes, T. (1999). Biochemical Engineering Journal, 3, 141–150.

    Article  CAS  Google Scholar 

  25. Hamidi-Esfahani, Z., Shojaosadati, S. A., & Rinzema, A. (2004). Biochemical Engineering Journal, 21, 265–272.

    Article  CAS  Google Scholar 

  26. Nagel, F., et al. (2001). Biotechnology and Bioengineering, 72, 231–243.

    Article  CAS  Google Scholar 

  27. Borzani, W., et al. (1999). Brazilian Journal of Chemical Engineering, 16, 101–102.

    Google Scholar 

  28. Scotti, C. T., et al. (2001). Biochemical Engineering Journal, 7, 1–5.

    Article  CAS  Google Scholar 

  29. Zheng, Z. X., & Shetty, K. (1998). Journal of Agricultural and Food Chemistry, 46, 783–787.

    Article  CAS  Google Scholar 

  30. Santoro, N., et al. (2010). Bioenergy Research, 3, 93–102.

    Article  Google Scholar 

  31. Luo, W., Vrijmoed, L. L. P., & Jones, E. B. G. (2005). Botanica Marina, 48, 379–386.

    Article  CAS  Google Scholar 

  32. Archer, D. B., & Peberdy, J. F. (1997). Critical Reviews in Biotechnology, 17, 273–306.

    Article  CAS  Google Scholar 

  33. Schirmer-Michel, A. C., et al. (2008). Bioresource Technology, 99, 2898–2904.

    Article  CAS  Google Scholar 

  34. Himmel, M. E., et al. (2007). Science, 315, 804–807.

    Article  CAS  Google Scholar 

  35. Sanchez, C. (2009). Biotechnology Advances, 27, 185–194.

    Article  CAS  Google Scholar 

  36. Ma, F. R., & Hanna, M. A. (1999). Bioresource Technology, 70, 1–15.

    Article  CAS  Google Scholar 

  37. Da Silveira, C. M., Oliveira, M. D., & Badiale-Furlong, E. (2010). Boletim Do Centro De Pesquisa De Processamento De Alimentos, 28, 133–140.

    Google Scholar 

  38. Abu, O. A., et al. (2000). Bioresource Technology, 72, 189–192.

    Article  CAS  Google Scholar 

  39. Lin, H., et al. (2010). Bioresource Technology, 101, 7556–7562.

    Article  CAS  Google Scholar 

  40. Certik, M., et al. (2006). Food Technology And Biotechnology, 44, 75–82.

    CAS  Google Scholar 

  41. Fakas, S., et al. (2009). Bioresource Technology, 100, 6118–6120.

    Article  CAS  Google Scholar 

  42. Peng, X. W., & Chen, H. Z. (2008). Bioresource Technology, 99, 3885–3889.

    Article  CAS  Google Scholar 

  43. Oriol, E., et al. (1988). Applied Microbiology and Biotechnology, 27, 498–503.

    CAS  Google Scholar 

  44. Sharma, R. K., & Arora, D. S. (2010). Bioresource Technology, 101, 9248–9253.

    Article  CAS  Google Scholar 

  45. Gervais, P., & Molin, P. (2003). Biochemical Engineering Journal, 13, 85–101.

    Article  CAS  Google Scholar 

  46. Peng, X. W., & Chen, H. Z. (2007). Annals of Microbiology, 57, 239–242.

    Article  CAS  Google Scholar 

  47. Pandey, A., et al. (1999). Current Science, 77, 149–162.

    CAS  Google Scholar 

  48. Ito, K., et al. (2011). Journal of Bioscience and Bioengineering, 111, 300–305.

    Article  CAS  Google Scholar 

  49. Nandakumar, M. P., et al. (1994). Process Biochemistry, 29, 545–551.

    Article  CAS  Google Scholar 

  50. Wyman, C. E., & Yang, B. (2008). Biofuels, Bioproducts and Biorefining, 2, 26–40.

    Article  Google Scholar 

  51. Mielenz, J. R., Bardsley, J. S., & Wyman, C. E. (2009). Bioresource Technology, 100, 3532–3539.

    Article  CAS  Google Scholar 

  52. Bartnicki-Garcia, S. (1963). Bacteriological Reviews, 96, 293–304.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Hu, B. Solid-State Fermentation of Mortierella isabellina for Lipid Production from Soybean Hull. Appl Biochem Biotechnol 166, 1034–1046 (2012). https://doi.org/10.1007/s12010-011-9491-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9491-9

Keywords

Navigation