Applied Biochemistry and Biotechnology

, Volume 166, Issue 4, pp 987–996 | Cite as

A Fungus Capable of Degrading Microcystin-LR in the Algal Culture of Microcystis aeruginosa PCC7806

  • Yong Jia
  • Jingjing Du
  • Fuqiang Song
  • Guiying Zhao
  • Xingjun TianEmail author


Microcystins (MCs) are a family of natural toxins produced by cyanobacteria (blue-green algae). Microbial degradation is considered an efficient method for eliminating cyanobacteria and MCs in environmental conditions. This study examines the ability of Trichaptum abietinum 1302BG, a white rot fungus, to degrade microcystin-LR in the harmful algal culture of Microcystis aeruginosa PCC7806. Results showed that microcystin-LR could not be detected by high-performance liquid chromatography after 12 h in algal culture incubated with the fungus. There were also high activities of catalase and peroxidase in algal culture incubated with the fungus. However, similar to the control, they decreased to normal levels after 72 h. Meanwhile, the micronucleus test in the toxicity studies revealed that the degraded algal culture had low toxicity.


Cyanobacteria Trichaptum abietinum 1302BG Microcystin-LR Micronucleus 



This work was financial supported by Project of National Basic Research Program of China (2008CB418004) and National Science Foundation of China (30870419).


  1. 1.
    Antoniou, M. G., Shoemaker, J. A., de la Cruz, A. A., & Dionysiou, D. D. (2008). LC/MS/MS structure elucidation of reaction intermediates formed during the TiO2 photocatalysis of microcystin-LR. Toxicon, 51, 1103–1118.CrossRefGoogle Scholar
  2. 2.
    Azevedo, S. M. F. O., Carmichael, W. W., Jochimsen, E. M., Rinehart, K. L., Lau, S., Shaw, G. R., & Eaglesham, G. K. (2002). Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicology, 181, 441–446.CrossRefGoogle Scholar
  3. 3.
    Brodkorb, T. S., & Legge, R. L. (1992). Enhanced biodegradation of phenanthrene in oil tar-contaminated soils supplemented with Phanerochaete chrysosporium. Applied and Environmental Microbiology, 58, 3117–3121.Google Scholar
  4. 4.
    Cakmak, I., & Marschner, H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 98, 1222–1227.CrossRefGoogle Scholar
  5. 5.
    Carmichael, W. W. (1992). Cyanobacteria secondary metabolites—the cyanotoxins. Journal of Applied Bacteriology, 72, 445–459.CrossRefGoogle Scholar
  6. 6.
    Chen, W., Song, L. R., Gan, N. Q., & Li, L. (2006). Sorption, degradation and mobility of microcystins in Chinese agriculture soils: Risk assessment for groundwater protection. Environmental Pollution, 144, 752–758.CrossRefGoogle Scholar
  7. 7.
    Christoffersen, K., Lyck, S., & Winding, A. (2002). Microbial activity and bacterial community structure during degradation of microcystins. Aquatic Microbial Ecology, 27, 125–136.CrossRefGoogle Scholar
  8. 8.
    Cousins, I. T., Bealing, D. J., James, H. A., & Sutton, A. (1996). Biodegradation of microcystin-LR by indigenous mixed bacterial populations. Water Research, 30, 481–485.CrossRefGoogle Scholar
  9. 9.
    Ding, W. X., Shen, H. M., Zhu, H. G., & Ong, C. N. (1998). Studies on oxidative damage induced by cyanobacteria extract in primary cultured rat hepatocytes. Environmental Research, 78, 12–18.CrossRefGoogle Scholar
  10. 10.
    Harada, K., & Tsuji, K. (1998). Persistence and decomposition of hepatotoxic microcystins produced by cyanobacteria in natural environment. Journal of Toxicology Toxin Review, 17, 385–403.Google Scholar
  11. 11.
    Hare, C. E., Demir, E., Coyne, K. J., Cary, S. C., Kirchman, D. L., & Hutchins, D. A. (2005). A bacterium that inhibits the growth of Pfiesteria piscicida and other dinoflagellates. Harmful Algae, 4, 221–234.CrossRefGoogle Scholar
  12. 12.
    Hashimoto, E. H., Kato, H., Kawasaki, Y., Nozawa, Y., Tsuji, K., Hirooka, E. Y., & Harada, K. (2009). Further investigation of microbial degradation of microcystin using the advanced Marfey method. Chemical Research in Toxicology, 22, 391–398.CrossRefGoogle Scholar
  13. 13.
    Ho, L. N., Gaudieux, A. L., Fanok, S., Newcombe, G., & Humpage, A. R. (2007). Bacterial degradation of microcystin toxins in drinking water eliminates their toxicity. Toxicon, 50, 438–441.CrossRefGoogle Scholar
  14. 14.
    Hyenstrand, P., Rohrlack, T., Beattie, K. A., Metcalf, J. S., Codd, G. A., & Christoffersen, K. (2003). Laboratory studies of dissolved radiolabelled microcystin-LR in lake water. Water Research, 37, 3299–3306.CrossRefGoogle Scholar
  15. 15.
    Garcia, F., Freile-Pelegrin, Y., & Robledo, D. (2007). Physiological characterization of Dunaliella sp. (Chlorophyta, Volvocales) from Yucatan, Mexico. Bioresource Technology, 98, 1359–1365.CrossRefGoogle Scholar
  16. 16.
    Giannopotitis, C. N., & Ries, S. K. (1977). Superoxide dismutase in higher plants. Plant Physiology, 59, 309–314.CrossRefGoogle Scholar
  17. 17.
    Ji, Q., & Chen, Y. F. (1996). Vicia faba root tip micronucleus test on the mutagenicity of water-soluble contents of cigarette smoke. Mutation Research, 359, 1–6.Google Scholar
  18. 18.
    Jia, Y., Han, G. M., Wang, C. Y., Guo, P., Jiang, W. X., Li, X. N., & Tian, X. J. (2010). The efficacy and mechanisms of fungal suppression of freshwater harmful algal bloom species. Journal of Hazardous Materials, 183, 176–181.CrossRefGoogle Scholar
  19. 19.
    Jia, Y., Wang, Q., Chen, Z. H., Jiang, W. X., Zhang, P., & Tian, X. J. (2010). Inhibition of phytoplankton species by co-culture with a fungus. Ecological Engineering, 36, 1389–1391.CrossRefGoogle Scholar
  20. 20.
    Jones, G. J., & Orr, P. T. (1994). Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Water Research, 28, 871–876.CrossRefGoogle Scholar
  21. 21.
    Kato, H., Imanishi, S. Y., Tsuji, K., & Harada, K. (2007). Microbial degradation of cyanobacterial cyclic peptides. Water Research, 41, 1754–1762.CrossRefGoogle Scholar
  22. 22.
    Lance, E., & Neffling, M. R. (2010). Accumulation of free and covalently bound microcystins in tissues of Lymnaea stagnalis (Gastropoda) following toxic cyanobacteria or dissolved microcystin-LR exposure. Environmental Pollution, 158, 674–680.CrossRefGoogle Scholar
  23. 23.
    Li, X. Y., & Liu, Y. D. (2003). Responses of antioxidant systems in the hepatocytes of common carp (Cyprinus carpio L.) to the toxicity of microcystin-LR. Toxicon, 42, 85–89.CrossRefGoogle Scholar
  24. 24.
    Ma, T. H., & Xu, Z. D. (1995). The improved Allium/Vicia root tip micronucleus assay for clastogenicity of environmental pollutants. Mutation Research, 334, 185–195.Google Scholar
  25. 25.
    Mackintosh, C., Beattie, K. A., Klumpp, S., Cohen, P., & Codd, G. A. (1990). Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatase 1 and 2A from both mammals and higher plants. FEBS Letters, 264, 187–192.CrossRefGoogle Scholar
  26. 26.
    Pflugmacher, S. (2004). Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR. Aquatic Toxicology, 70, 169–178.CrossRefGoogle Scholar
  27. 27.
    Puerto, M., Prieto, A. L., Pichardo, S., Moreno, I., Jos, A., Moyano, R., & Camean, A. M. (2009). Effects of dietary N-acetylcysteine on the oxidative stress induced in tilapia (Oreochromis niloticus) exposed to a microcystin-producing cyanobacterial water bloom. Environmental Toxicology and Chemistry, 28, 1679–1686.CrossRefGoogle Scholar
  28. 28.
    Saratale, R. G., Saratale, G. D., Chang, J. S., & Govindwar, P. S. (2009). Decolorization and biodegradation of textile dye Navy blue HER by Trichosporon beigelii NCIM-3326. Journal of Hazardous Materials, 166, 1421–1428.CrossRefGoogle Scholar
  29. 29.
    Shedbalkar, U., Dhanve, R., & Jadhav, J. (2008). Biodegradation of triphenylmethane dye cotton blue by Penicillium ochrochloron MTCC 517. Journal of Hazardous Materials, 157, 472–479.CrossRefGoogle Scholar
  30. 30.
    Stanier, R. Y., & Kunisawa, R. (1971). Purification and properties of unicellular blue-green algae (Order Cchroococcales). Bacteriological Reviews, 35, 171–205.Google Scholar
  31. 31.
    Tsuji, K., Asakawa, M., Anzai, Y., Sumino, T., & Harada, K. (2006). Degradation of microcystins using immobilized microorganism isolated in an eutrophic lake. Chemosphere, 65, 117–124.CrossRefGoogle Scholar
  32. 32.
    Wang, H. Q. (1999). Clastogenicity of chromium contaminated soil samples evaluated by Vicia root-micronucleus assay. Mutation Research, 426, 147–149.CrossRefGoogle Scholar
  33. 33.
    Yin, L. Y., Huang, J. Q., Huang, W. M., Li, D. H., Wang, G. H., & Liu, Y. D. (2005). Microcystin-RR-induced accumulation of reactive oxygen species and alteration of antioxidant systems in tobacco BY-2 cells. Toxicon, 46, 507–512.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yong Jia
    • 2
  • Jingjing Du
    • 1
  • Fuqiang Song
    • 3
  • Guiying Zhao
    • 1
  • Xingjun Tian
    • 1
    Email author
  1. 1.School of Life ScienceNanjing UniversityNanjingPeople’s Republic of China
  2. 2.School of Life ScienceNanjing Normal UniversityNanjingPeople’s Republic of China
  3. 3.School of Life ScienceHeilongjiang UniversityHarbinPeople’s Republic of China

Personalised recommendations