Skip to main content

Advertisement

Log in

Microbial Production of Propionic Acid with Propionibacterium freudenreichii Using an Anion Exchanger-Based In Situ Product Recovery (ISPR) Process with Direct and Indirect Contact of Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The recovery of an inhibiting product from a bioreactor soon after its formation is an important issue in industrial bioprocess development. In the present study, the potential of the anion exchanger-based in situ product recovery (ISPR) technique for the biocatalytic production of propionic acid was discussed. The focus of the current work was the selection of a suitable configuration of metabolically active cells for application in propionic acid production. Accumulation of propionic acid in fermentation broth caused feedback inhibition of the growth and biotransformation activity of Propionibacterium freudenreichii CICC 10019. Relevant product inhibition kinetics was discussed, and the results showed that keeping the aqueous propionic acid concentration below 10.02 g L−1 was an essential prerequisite for ISPR process. A batch study, in which three ISPR configuration mode designs were compared, was conducted. The comparison indicated that employing an external direct mode had significant advantages over other modes in terms of increased productivity and product yield, with a corresponding decrease in the number of downstream processing steps, as well as in substrate consumption. The fed-batch culture using an external direct mode for the continuous accumulation of propionic acid resulted in a cumulative propionic acid concentration of 62.5 g L−1, with a corresponding product yield of 0.78 g propionic acid/g glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lueck, E. (1980). Propionic acid. In E. Lueck (Ed.), Antimicrobial food additives. Characteristics, uses, effects (pp. 175–182). Berlin: Springer.

    Google Scholar 

  2. Huitson, J. J. (1968). Process Biochemistry, 3, 31–32.

    Google Scholar 

  3. Draughon, F. A., Mobley, D. C., Safley, L. M., & Backus, W. R. (1982). Journal of Food Science, 44, 1018–1019.

    Article  Google Scholar 

  4. Playne, M. J. (1985). Propionic and butyric acids. In M. Moo-Young (Ed.), Comprehensive biotechnology (pp. 731–755). New York: Pergamon.

    Google Scholar 

  5. Gu, Z., Glatz, B., & Glatz, C. (1998). Enzyme and Microbial Technology, 22, 13–18.

    Article  CAS  Google Scholar 

  6. Suwannakham, S., & Yang, S. T. (2005). Biotechnology and Bioengineering, 91, 325–337.

    Article  CAS  Google Scholar 

  7. Goswami, V., & Srivastava, A. K. (2001). Applied Microbiology and Biotechnology, 56, 676–680.

    Article  CAS  Google Scholar 

  8. Lewis, V., & Yang, S. T. (1992). Biotechnology Progress, 8, 104–110.

    Article  CAS  Google Scholar 

  9. Ozadali, F., Glatz, B., & Glatz, C. (1996). Applied Microbiology and Biotechnology, 44, 710–716.

    CAS  Google Scholar 

  10. Wang, K., Chang, Z. D., Ma, Y. C., Lei, C., Wang, J., Zhu, T. Y., Liu, H. Z., Zuo, Y. J., & Li, X. (2008). Journal of Bioscience and Bioengineering, 100, 2878–2882.

    Google Scholar 

  11. Woskow, S. A., & Glatz, B. A. (1991). Applied and Environmental Microbiology, 57, 2821–2828.

    CAS  Google Scholar 

  12. Suwannakham, S., Huang, Y., & Yang, S. T. (2006). Biotechnology and Bioengineering, 94, 383–395.

    Article  CAS  Google Scholar 

  13. Stark, D., & von Stockar, U. (2003). Advances in Biochemical Engineering/Biotechnology, 80, 149–175.

    Article  CAS  Google Scholar 

  14. Matsumoto, M., Takagi, T., & Kondo, K. (1998). Journal of Fermentation and Bioengineering, 85, 483–487.

    Article  CAS  Google Scholar 

  15. Siebold, M., Frieling, P. V., Joppien, R., Rindfleisch, D., Schügerl, K., & Röper, H. (1995). Process Biochemistry, 30, 81–95.

    CAS  Google Scholar 

  16. Mehaia, M. A., & Cheryan, M. (1987). Process Biochemistry, 22, 185–188.

    CAS  Google Scholar 

  17. Hjörleifsdottir, S., Seevaratnam, S., Holst, O., & Mattiasson, B. (1990). Current Microbiology, 20, 287–292.

    Article  Google Scholar 

  18. Gupta, A., & Srivastava, A. K. (2001). Biotechnology and Bioprocess Engineering, 6, 1–5.

    Article  CAS  Google Scholar 

  19. Boyaval, P., Corre, C., & Madec, M. N. (1994). Enzyme and Microbial Technology, 16, 883–886.

    Article  CAS  Google Scholar 

  20. Mirata, M. A., Wust, M., Mosandl, A., & Schrader, J. (2008). Journal of Agricultural and Food Chemistry, 56, 3287–3296.

    Article  CAS  Google Scholar 

  21. Luong, J. H. T. (1985). Biotechnology and Bioengineering, 27, 280–285.

    Article  CAS  Google Scholar 

  22. Alphand, V., Carrea, G., Wohlgemuth, R., Furstoss, R., & Woodley, J. M. (2003). Trends in Biotechnology, 21, 318–323.

    Article  CAS  Google Scholar 

  23. León, R., Fernandes, P., Pinheiro, H. M., & Cabral, J. M. S. (1998). Enzyme and Microbial Technology, 23, 483–500.

    Article  Google Scholar 

  24. Coral, J., Karp, S. G., Vandenberghe, L. P. S., Parada, J. L., Pandey, A., & Soccol, C. R. (2008). Applied Biochemistry and Biotechnology, 151, 333–341.

    Article  CAS  Google Scholar 

  25. Zhang, A., & Yang, S. T. (2009). Process Biochemistry, 44, 1346–1351.

    Article  CAS  Google Scholar 

  26. Zhu, Y. F., Li, J. H., Tan, M., Liu, L., Jiang, L. L., Sun, J., Lee, P. S., Du, G. C., & Chen, J. (2010). Bioresource Technology, 101, 2845–2852.

    Article  Google Scholar 

  27. Freeman, A., Woodley, J. M., & Lilly, M. D. (1993). Biotechnology, 11, 1007–1012.

    Article  CAS  Google Scholar 

  28. Lye, G. J., & Woodley, J. M. (1999). Trends in Biotechnology, 17, 395–402.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences, Grant NO.KSCX2-YW-G-021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunshan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Wang, Y. & Su, Z. Microbial Production of Propionic Acid with Propionibacterium freudenreichii Using an Anion Exchanger-Based In Situ Product Recovery (ISPR) Process with Direct and Indirect Contact of Cells. Appl Biochem Biotechnol 166, 974–986 (2012). https://doi.org/10.1007/s12010-011-9485-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9485-7

Keywords

Navigation