Skip to main content
Log in

Production of d-tagatose, a Functional Sweetener, Utilizing Alginate Immobilized Lactobacillus fermentum CGMCC2921 Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

d-tagatose is a ketohexose that can be used as a novel functional sweetener in foods, beverages, and dietary supplements. This study was aimed at developing a high-yielding d-tagatose production process using alginate immobilized Lactobacillus fermentum CGMCC2921 cells. For the isomerization from d-galactose into d-tagatose, the immobilized cells showed optimum temperature and pH at 65 °C and 6.5, respectively. The alginate beads exhibited a good stability after glutaraldehyde treatment and retained 90% of the enzyme activity after eight cycles (192 h at 65 °C) of batch conversion. The addition of borate with a molar ratio of 1.0 to d-galactose led to a significant enhancement in the d-tagatose yield. Using commercial β-galactosidase and immobilized L. fermentum cells, d-tagatose was successfully obtained from lactose after a two-step biotransformation. The relatively high conversion rate and productivity from d-galactose to d-tagatose of 60% and 11.1 g l−1 h−1 were achieved in a packed-bed bioreactor. Moreover, lactobacilli have been approved as generally recognized as safe organisms, which makes this L. fermentum strain an attracting substitute for recombinant Escherichia coli cells among d-tagatose production progresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Levin, G. V. (2002). Tagatose, the new GRAS sweetener and health product. Journal of Medicinal Food, 5, 23–36.

    Article  CAS  Google Scholar 

  2. Kim, P. (2004). Current studies on biological tagatose production using l-arabinose isomerase: a review and future perspective. Applied Microbiology and Biotechnology, 65, 243–249.

    CAS  Google Scholar 

  3. Jørgensen, F., Hansen, O. C., & Stougaard, P. (2004). Enzymatic conversion of d-galactose to d-tagatose: heterologous expression and characterization of a thermostable L-arabinose isomerase from Thermoanaerobacter mathranii. Applied Microbiology and Biotechnology, 64, 816–822.

    Article  Google Scholar 

  4. Beadle JR, Saunder JP, Wajada TJ (1991) Process for manufacturing tagatose. US patent 500261

  5. Oh, D. K. (2007). Tagatose: properties, applications, and biotechnological processes. Applied Microbiology and Biotechnology, 76, 1–8.

    Article  CAS  Google Scholar 

  6. Cheetham, P. S. J., & Wootton, A. N. (1993). Bioconversion of d-galactose into d-tagatose. Enzyme and Microbial Technology, 15, 105–108.

    Article  CAS  Google Scholar 

  7. Kim, H. J., & Oh, D. K. (2005). Purification and characterization of an l-arabinose isomerase from an isolated strain of Geobacillus thermodenitrificans producing d-tagatose. Journal of Biotechnology, 120, 162–173.

    Article  CAS  Google Scholar 

  8. Xu, Z., Qing, Y. J., Li, S., Feng, X. H., Xu, H., & Ouyang, P. K. (2011). A novel l-arabinose isomerase from Lactobacillus fermentum CGMCC2921 for d-tagatose production: gene cloning, purification and characterization. Journal of Molecular Catalysis B: Enzymatic, 70, 1–7.

    Article  CAS  Google Scholar 

  9. Lim, B. C., Kim, H. J., & Oh, D. K. (2007). High production of d-tagatose by the addition of boric acid. Biotechnology Progress, 23, 824–828.

    CAS  Google Scholar 

  10. Jung, E. S., Kim, H. J., & Oh, D. K. (2005). Tagatose production by immobilized recombinant Escherichia coli cells containing Geobacillus stearothermophilus l-arabinose isomerase mutant in a packed-bed bioreactor. Biotechnology Progress, 21, 1335–1340.

    Article  CAS  Google Scholar 

  11. Donohue, D. C., & Salminen, S. (1996). Safety of probiotic bacteria. Asia Pacific Journal Clinical Nutritional, 5, 25–28.

    Google Scholar 

  12. Wang, F. R., Xu, H., Li, S., Zhu, H. Y., & Huan, M. X. (2009). Screening and identification of two d-tagatose-producing strains. Food and Fermentation Industries (in Chinese), 35, 15–19.

    CAS  Google Scholar 

  13. Dische, Z., & Borenfreund, E. (1951). A new spectrophotometric method for the detection and determination of keto sugars and trioses. Journal of Biological Chemistry, 192, 583–587.

    CAS  Google Scholar 

  14. Oh, D. K., Kim, H. J., Ryu, S. A., & Kim, P. (2001). Development of an immobilization method of l-arabinose isomerase for industrial production of tagatose. Biotechnology Letters, 23, 1859–1862.

    Article  CAS  Google Scholar 

  15. Anisha, G. S., & Prema, P. (2008). Cell immobilization technique for the enhanced production of α-galactosidase by Streptomyces griseoloalbus. Bioresource Technology, 99, 3325–3330.

    Article  CAS  Google Scholar 

  16. Rhimi, M., Messaoud, E. B., Borgi, M. A., Khadra, K. B., & Bejar, S. (2007). Co-expression of l-arabinose isomerase and d-glucose isomerase in E. coli and development of an efficient process producing simultaneously d-tagatose and d-fructose. Enzyme and Microbial Technology, 40, 1531–1537.

    Article  CAS  Google Scholar 

  17. Lee, S. J., Lee, D. W., Choe, E. A., Hong, Y. H., Kim, S. B., Kim, B. C., & Pyun, Y. R. (2005). Characterization of a thermoacidophilic l-arabinose isomerase from Alicyclobacillus acidocaldarius: role of Lys-269 in pH optimum. Applied and Environmental Microbiology, 71, 7888–7896.

    Article  CAS  Google Scholar 

  18. Ibrahim OO, Spradlin JE (2000) Process for manufacturing d-tagatose. US patent 6057135

  19. Ryu, S. A., Kim, C. S., Kin, H. J., Baek, D. H., & Oh, D. K. (2003). Continuous d-tagatose production by immobilized thermostable l-arabinose isomerase in a packed-bed bioreactor. Biotechnology Progress, 19, 1643–1647.

    Article  CAS  Google Scholar 

  20. Zhang, Y. W., Prabhu, P., & Lee, J. K. (2010). Alginate immobilization of recombinant Escherichia coli whole cells harboring l-arabinose isomerase for l-ribulose production. Bioprocess and Biosystems Engineering, 33, 741–748.

    Article  CAS  Google Scholar 

  21. Aider, M., & de Halleux, D. (2007). Isomerization of lactose and lactulose production: review. Trends in Food Science and Technology, 18, 356–364.

    Article  CAS  Google Scholar 

  22. Mendicino, J. F. (1960). Effect of borate on the alkali-catalyzed isomerization of sugars. Journal of the American Chemical Society, 20, 4975–4979.

    Article  Google Scholar 

  23. Zhang, Y. W., Jeya, M., & Lee, J. K. (2010). l-Ribulose production by an Escherichia coli harboring l-arabinose isomerase from Bacillus licheniformis. Applied Microbiology and Biotechnology, 87, 1993–1999.

    Article  CAS  Google Scholar 

  24. Helanto, M., Kiviharju, K., Leisola, M., & Nyyssölä, A. (2007). Metabolic engineering of Lactobacillus plantarum for production of l-ribulose. Applied and Environmental Microbiology, 73, 7083–7091.

    Article  CAS  Google Scholar 

  25. Englesberg, E. (1961). Enzymatic characterization of 17 l-arabinose negative mutants of Escherichia coli. Journal of Bacteriology, 81, 996–1006.

    CAS  Google Scholar 

  26. Kim, P., Yoon, S. H., Roh, H. J., & Choi, J. H. (2001). High production of d-tagatose, a potential sugar substitute, using immobilized l-arabinose isomerase. Biotechnology Progress, 17, 208–210.

    Article  CAS  Google Scholar 

  27. Kim, H. J., Ryu, S. A., Kim, P., & Oh, D. K. (2003). A feasible enzymatic process for d-tagatose production by an immobilized thermostable l-arabinose isomerase in a packed-bed bioreactor. Biotechnology Progress, 19, 400–404.

    Article  CAS  Google Scholar 

  28. Hong, Y. H., Lee, D. W., Lee, S. J., Choe, E. A., Kim, S. B., Lee, Y. H., Cheigh, C. I., & Pyun, Y. R. (2007). Production of d-tagatose at high temperatures using immobilized Escherichia coli cells expressing l-arabinose isomerase from Thermotoga neapolitana. Biotechnology Letters, 29, 569–574.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973) (2009CB724700), the National Nature Science Foundation of China (20906050), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (no. 08KJA180001), the Natural Science Foundation of Jiangsu Province (BK2009357), and the Specialized Research Fund for the Doctoral Program of Higher Education (20103221120007).

This work was also supported by the State Key Laboratory of Materials-Oriented Chemical Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Li, S., Fu, F. et al. Production of d-tagatose, a Functional Sweetener, Utilizing Alginate Immobilized Lactobacillus fermentum CGMCC2921 Cells. Appl Biochem Biotechnol 166, 961–973 (2012). https://doi.org/10.1007/s12010-011-9484-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9484-8

Keywords

Navigation