Advertisement

Applied Biochemistry and Biotechnology

, Volume 166, Issue 4, pp 961–973 | Cite as

Production of d-tagatose, a Functional Sweetener, Utilizing Alginate Immobilized Lactobacillus fermentum CGMCC2921 Cells

  • Zheng Xu
  • Sha Li
  • Fenggen Fu
  • Guixiang Li
  • Xiaohai Feng
  • Hong XuEmail author
  • Pingkai Ouyang
Article

Abstract

d-tagatose is a ketohexose that can be used as a novel functional sweetener in foods, beverages, and dietary supplements. This study was aimed at developing a high-yielding d-tagatose production process using alginate immobilized Lactobacillus fermentum CGMCC2921 cells. For the isomerization from d-galactose into d-tagatose, the immobilized cells showed optimum temperature and pH at 65 °C and 6.5, respectively. The alginate beads exhibited a good stability after glutaraldehyde treatment and retained 90% of the enzyme activity after eight cycles (192 h at 65 °C) of batch conversion. The addition of borate with a molar ratio of 1.0 to d-galactose led to a significant enhancement in the d-tagatose yield. Using commercial β-galactosidase and immobilized L. fermentum cells, d-tagatose was successfully obtained from lactose after a two-step biotransformation. The relatively high conversion rate and productivity from d-galactose to d-tagatose of 60% and 11.1 g l−1 h−1 were achieved in a packed-bed bioreactor. Moreover, lactobacilli have been approved as generally recognized as safe organisms, which makes this L. fermentum strain an attracting substitute for recombinant Escherichia coli cells among d-tagatose production progresses.

Keywords

d-Tagatose Lactobacillus fermentum Immobilized cells Packed-bed bioreactor l-arabinose isomerase 

Notes

Acknowledgments

This work was supported by the National Basic Research Program of China (973) (2009CB724700), the National Nature Science Foundation of China (20906050), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (no. 08KJA180001), the Natural Science Foundation of Jiangsu Province (BK2009357), and the Specialized Research Fund for the Doctoral Program of Higher Education (20103221120007).

This work was also supported by the State Key Laboratory of Materials-Oriented Chemical Engineering.

References

  1. 1.
    Levin, G. V. (2002). Tagatose, the new GRAS sweetener and health product. Journal of Medicinal Food, 5, 23–36.CrossRefGoogle Scholar
  2. 2.
    Kim, P. (2004). Current studies on biological tagatose production using l-arabinose isomerase: a review and future perspective. Applied Microbiology and Biotechnology, 65, 243–249.Google Scholar
  3. 3.
    Jørgensen, F., Hansen, O. C., & Stougaard, P. (2004). Enzymatic conversion of d-galactose to d-tagatose: heterologous expression and characterization of a thermostable L-arabinose isomerase from Thermoanaerobacter mathranii. Applied Microbiology and Biotechnology, 64, 816–822.CrossRefGoogle Scholar
  4. 4.
    Beadle JR, Saunder JP, Wajada TJ (1991) Process for manufacturing tagatose. US patent 500261Google Scholar
  5. 5.
    Oh, D. K. (2007). Tagatose: properties, applications, and biotechnological processes. Applied Microbiology and Biotechnology, 76, 1–8.CrossRefGoogle Scholar
  6. 6.
    Cheetham, P. S. J., & Wootton, A. N. (1993). Bioconversion of d-galactose into d-tagatose. Enzyme and Microbial Technology, 15, 105–108.CrossRefGoogle Scholar
  7. 7.
    Kim, H. J., & Oh, D. K. (2005). Purification and characterization of an l-arabinose isomerase from an isolated strain of Geobacillus thermodenitrificans producing d-tagatose. Journal of Biotechnology, 120, 162–173.CrossRefGoogle Scholar
  8. 8.
    Xu, Z., Qing, Y. J., Li, S., Feng, X. H., Xu, H., & Ouyang, P. K. (2011). A novel l-arabinose isomerase from Lactobacillus fermentum CGMCC2921 for d-tagatose production: gene cloning, purification and characterization. Journal of Molecular Catalysis B: Enzymatic, 70, 1–7.CrossRefGoogle Scholar
  9. 9.
    Lim, B. C., Kim, H. J., & Oh, D. K. (2007). High production of d-tagatose by the addition of boric acid. Biotechnology Progress, 23, 824–828.Google Scholar
  10. 10.
    Jung, E. S., Kim, H. J., & Oh, D. K. (2005). Tagatose production by immobilized recombinant Escherichia coli cells containing Geobacillus stearothermophilus l-arabinose isomerase mutant in a packed-bed bioreactor. Biotechnology Progress, 21, 1335–1340.CrossRefGoogle Scholar
  11. 11.
    Donohue, D. C., & Salminen, S. (1996). Safety of probiotic bacteria. Asia Pacific Journal Clinical Nutritional, 5, 25–28.Google Scholar
  12. 12.
    Wang, F. R., Xu, H., Li, S., Zhu, H. Y., & Huan, M. X. (2009). Screening and identification of two d-tagatose-producing strains. Food and Fermentation Industries (in Chinese), 35, 15–19.Google Scholar
  13. 13.
    Dische, Z., & Borenfreund, E. (1951). A new spectrophotometric method for the detection and determination of keto sugars and trioses. Journal of Biological Chemistry, 192, 583–587.Google Scholar
  14. 14.
    Oh, D. K., Kim, H. J., Ryu, S. A., & Kim, P. (2001). Development of an immobilization method of l-arabinose isomerase for industrial production of tagatose. Biotechnology Letters, 23, 1859–1862.CrossRefGoogle Scholar
  15. 15.
    Anisha, G. S., & Prema, P. (2008). Cell immobilization technique for the enhanced production of α-galactosidase by Streptomyces griseoloalbus. Bioresource Technology, 99, 3325–3330.CrossRefGoogle Scholar
  16. 16.
    Rhimi, M., Messaoud, E. B., Borgi, M. A., Khadra, K. B., & Bejar, S. (2007). Co-expression of l-arabinose isomerase and d-glucose isomerase in E. coli and development of an efficient process producing simultaneously d-tagatose and d-fructose. Enzyme and Microbial Technology, 40, 1531–1537.CrossRefGoogle Scholar
  17. 17.
    Lee, S. J., Lee, D. W., Choe, E. A., Hong, Y. H., Kim, S. B., Kim, B. C., & Pyun, Y. R. (2005). Characterization of a thermoacidophilic l-arabinose isomerase from Alicyclobacillus acidocaldarius: role of Lys-269 in pH optimum. Applied and Environmental Microbiology, 71, 7888–7896.CrossRefGoogle Scholar
  18. 18.
    Ibrahim OO, Spradlin JE (2000) Process for manufacturing d-tagatose. US patent 6057135Google Scholar
  19. 19.
    Ryu, S. A., Kim, C. S., Kin, H. J., Baek, D. H., & Oh, D. K. (2003). Continuous d-tagatose production by immobilized thermostable l-arabinose isomerase in a packed-bed bioreactor. Biotechnology Progress, 19, 1643–1647.CrossRefGoogle Scholar
  20. 20.
    Zhang, Y. W., Prabhu, P., & Lee, J. K. (2010). Alginate immobilization of recombinant Escherichia coli whole cells harboring l-arabinose isomerase for l-ribulose production. Bioprocess and Biosystems Engineering, 33, 741–748.CrossRefGoogle Scholar
  21. 21.
    Aider, M., & de Halleux, D. (2007). Isomerization of lactose and lactulose production: review. Trends in Food Science and Technology, 18, 356–364.CrossRefGoogle Scholar
  22. 22.
    Mendicino, J. F. (1960). Effect of borate on the alkali-catalyzed isomerization of sugars. Journal of the American Chemical Society, 20, 4975–4979.CrossRefGoogle Scholar
  23. 23.
    Zhang, Y. W., Jeya, M., & Lee, J. K. (2010). l-Ribulose production by an Escherichia coli harboring l-arabinose isomerase from Bacillus licheniformis. Applied Microbiology and Biotechnology, 87, 1993–1999.CrossRefGoogle Scholar
  24. 24.
    Helanto, M., Kiviharju, K., Leisola, M., & Nyyssölä, A. (2007). Metabolic engineering of Lactobacillus plantarum for production of l-ribulose. Applied and Environmental Microbiology, 73, 7083–7091.CrossRefGoogle Scholar
  25. 25.
    Englesberg, E. (1961). Enzymatic characterization of 17 l-arabinose negative mutants of Escherichia coli. Journal of Bacteriology, 81, 996–1006.Google Scholar
  26. 26.
    Kim, P., Yoon, S. H., Roh, H. J., & Choi, J. H. (2001). High production of d-tagatose, a potential sugar substitute, using immobilized l-arabinose isomerase. Biotechnology Progress, 17, 208–210.CrossRefGoogle Scholar
  27. 27.
    Kim, H. J., Ryu, S. A., Kim, P., & Oh, D. K. (2003). A feasible enzymatic process for d-tagatose production by an immobilized thermostable l-arabinose isomerase in a packed-bed bioreactor. Biotechnology Progress, 19, 400–404.CrossRefGoogle Scholar
  28. 28.
    Hong, Y. H., Lee, D. W., Lee, S. J., Choe, E. A., Kim, S. B., Lee, Y. H., Cheigh, C. I., & Pyun, Y. R. (2007). Production of d-tagatose at high temperatures using immobilized Escherichia coli cells expressing l-arabinose isomerase from Thermotoga neapolitana. Biotechnology Letters, 29, 569–574.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Zheng Xu
    • 1
    • 2
  • Sha Li
    • 1
    • 2
  • Fenggen Fu
    • 1
    • 2
  • Guixiang Li
    • 1
    • 2
  • Xiaohai Feng
    • 1
    • 2
  • Hong Xu
    • 1
    • 2
    Email author
  • Pingkai Ouyang
    • 3
  1. 1.State Key Laboratory of Materials-Oriented Chemical EngineeringNanjingPeople’s Republic of China
  2. 2.College of Food Science and Light IndustryNanjing University of TechnologyNanjingPeople’s Republic of China
  3. 3.College of Biotechnology and Pharmaceutical EngineeringNanjing University of TechnologyNanjingPeople’s Republic of China

Personalised recommendations