Advertisement

Applied Biochemistry and Biotechnology

, Volume 166, Issue 4, pp 952–960 | Cite as

A Thermophilic Cellulase Complex from Phialophora sp. G5 Showing High Capacity in Cellulose Hydrolysis

  • Junqi Zhao
  • Pengjun Shi
  • Yingguo Bai
  • Huoqing Huang
  • Huiying Luo
  • Huitu ZhangEmail author
  • Donghao Xu
  • Yaru Wang
  • Bin YaoEmail author
Article

Abstract

A cellulase-producing mesophilic fungal strain, named G5, was isolated from the acidic wastewater and mud of a tin mine and identified as Phialophora sp. based on the internal transcribed spacer sequence. The volumetric activities and specific activities of cellulase induced by different carbon sources (Avicel, corn cob, wheat bran and corn stover) were compared. The cellulase complex of Phialophora sp. G5 exhibited the optimal activities at 60–65 °C and pH 4.0–5.0, and had good long-term thermostability at 50 °C. Compared with the commercial cellulase (Accellerase 1500, Genencor), the enzyme under study showed 60% and 80% of the capacity to hydrolyze pure cellulose and natural cellulose, respectively. This is the first study to report that a cellulytic enzymes complex from Phialophora genus, and the superior properties of this enzyme complex make strain G5 a potential microbial source to produce cellulase for industrial applications, and the production ability could be improved by mutagenesis.

Keywords

Phialophora sp. G5 Thermophilic Thermostability Cellulase complex 

Notes

Acknowledgements

This work was supported by the China Modern Agriculture Research System (CARS-42) and the Key Program of Transgenic Plant Breeding (2009ZX08003-020B) and the national science and technology support program (2011BADB02).

References

  1. 1.
    Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbiology and Molecular Biology Reviews, 66, 506–577.CrossRefGoogle Scholar
  2. 2.
    Ng, I. S., Li, C. W., Chan, S. P., Chir, J. L., Chen, P. T., Tong, C. G., Yu, S. M., & Ho, T. H. D. (2010). Bioresource Technology, 10, 1310–1317.CrossRefGoogle Scholar
  3. 3.
    Henrissat, B. (1994). Cellulose, 1, 169–196.CrossRefGoogle Scholar
  4. 4.
    Schmoll, M., & Kubicek, C. P. (2003). Acta Microbiologica Immunologica Hungarcia, 50, 125–145.CrossRefGoogle Scholar
  5. 5.
    Zhang, Y.-H. P., & Lynd, L. R. (2004). Biotechnolology and Bioengineering, 88, 797–824.CrossRefGoogle Scholar
  6. 6.
    Samayam, I. P., & Schall, C. A. (2010). Bioresource Technology, 101, 3561–3566.CrossRefGoogle Scholar
  7. 7.
    Shi, Q. Q., Sun, J., Yu, H. L., Li, C. X., Bao, J., & Xu, H. J. (2011). Applied Biochemistry and Biotechnology, 164, 819–830.Google Scholar
  8. 8.
    Cheng, Y., Song, X., Qin, Y., & Qu, Y. (2009). Journal of Applied Microbiology, 107, 1837–1846.CrossRefGoogle Scholar
  9. 9.
    Dashtban, M., Schraft, H., & Qin, W. S. (2009). International Journal of Biological Sciences, 5, 578–595.CrossRefGoogle Scholar
  10. 10.
    Latifian, M., Esfahani, Z. H., & Barzegar, M. (2007). Bioresource Technology, 98, 3634–3637.CrossRefGoogle Scholar
  11. 11.
    Zhang, Y.-H. P., Himmel, M. E., & Mielenz, J. R. (2006). Biotechnology Advances, 24, 452–481.CrossRefGoogle Scholar
  12. 12.
    Saitou, N., & Nei, M. (1987). Molecular Biology and Evolution, 4, 406–425.Google Scholar
  13. 13.
    Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). Molecular Biology and Evolution, 24, 1596–1599.CrossRefGoogle Scholar
  14. 14.
    Gao, J. M., Weng, H. B., Zhu, D. H., Yuan, M. X., Guan, F. X., & Xi, Y. (2008). Bioresource Technology, 99, 7623–7629.CrossRefGoogle Scholar
  15. 15.
    Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.CrossRefGoogle Scholar
  16. 16.
    Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  17. 17.
    Valášková, V., & Baldrian, P. (2006). Microbiology, 152, 3613–3622.CrossRefGoogle Scholar
  18. 18.
    Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  19. 19.
    Osono, T., Fukasawa, Y., & Takeda, H. (2003). Mycologia, 95, 820–825.CrossRefGoogle Scholar
  20. 20.
    Voutilainen, S. P., Murray, P. G., Tuohy, M. G., & Koivula, A. (2010). Protein Engineering, Design & Selection, 23, 69–79.CrossRefGoogle Scholar
  21. 21.
    Heinzelman, P., Snow, C. D., Smith, M. A., Yu, X. L., Kannan, A., Boulware, K., Villalobos, A., Govindarajan, S., Minshull, J., & Arnold, F. H. (2009). The Journal of Biological Chemistry, 284, 26229–26233.CrossRefGoogle Scholar
  22. 22.
    Huang, Y., Krauss, G., Cottaz, S., Driguez, H., & Lipps, G. (2005). Biochemical Journal, 385, 581–588.CrossRefGoogle Scholar
  23. 23.
    Lee, Y. J., Kim, B. K., Lee, B. H., Jo, K. I., Lee, N. K., Chung, C. H., Lee, Y. C., & Lee, J. W. (2008). Bioresource Technology, 99, 378–386.CrossRefGoogle Scholar
  24. 24.
    Maki, M., Leung, K. T., & Qin, W. S. (2009). International Journal of Biological Sciences, 5, 500–516.CrossRefGoogle Scholar
  25. 25.
    Ni, J. F., Takehara, M., Miyazawa, M., & Watanabe, H. (2007). Protein Engineering, Design & Selection, 20, 535–542.CrossRefGoogle Scholar
  26. 26.
    Voutilainen, S. P., Puranen, T., Siika-aho, M., Lappalainen, A., Alapuranen, M., Kallio, J., Hooman, S., Viikri, L., Vehmaanpera, J., & Koivula, A. (2008). Biotechnolology and Bioengineerin, 101, 515–528.CrossRefGoogle Scholar
  27. 27.
    Camassola, M., De Bittencourt, L. R., Shenem, N. T., Andreaus, J., & Dillon, A. J. P. (2004). Biocatalysis and Biotransformation, 22, 391–396.CrossRefGoogle Scholar
  28. 28.
    Martins, L. F., Kolling, D., Camassola, M., Dillon, A. J. P., & Ramos, L. P. (2008). Bioresource Technology, 99, 1417–1424.CrossRefGoogle Scholar
  29. 29.
    Adsul, M. G., Bastawde, K. B., Varma, A. J., & Gokhale, D. V. (2007). Bioresource Technology, 98, 1467–1473.CrossRefGoogle Scholar
  30. 30.
    Vlasenko, E., Schülein, M., Cherry, J., & Xu, F. (2010). Bioresource Technology, 101, 2405–2411.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Junqi Zhao
    • 1
  • Pengjun Shi
    • 1
  • Yingguo Bai
    • 1
  • Huoqing Huang
    • 1
  • Huiying Luo
    • 1
  • Huitu Zhang
    • 2
    Email author
  • Donghao Xu
    • 1
  • Yaru Wang
    • 1
  • Bin Yao
    • 1
    Email author
  1. 1.Key Laboratory for Feed Biotechnology of the Ministry of AgricultureFeed Research Institute, Chinese Academy of Agricultural SciencesBeijingPeople’s Republic of China
  2. 2.College of BiotechnologyTianjin University of Science and TechnologyTianjinPeople’s Republic of China

Personalised recommendations