Advertisement

Applied Biochemistry and Biotechnology

, Volume 166, Issue 4, pp 933–941 | Cite as

In Vitro Reduction of Hexavalent Chromium by Cytoplasmic Fractions of Pannonibacter phragmitetus LSSE-09 under Aerobic and Anaerobic Conditions

  • Lin Xu
  • Mingfang Luo
  • Chengying Jiang
  • Xuetuan Wei
  • Peng Kong
  • Xiangfeng Liang
  • Junmei Zhao
  • Liangrong Yang
  • Huizhou LiuEmail author
Article

Abstract

Hexavalent chromate reductase was characterized and was found to be localized in the cytoplasmic fraction of a chromium-resistant bacterium Pannonibacter phragmitetus LSSE-09. The Cr(VI) reductase activity of cell-free extract (S12) was significantly improved by external electron donors, such as NADH, glucose, acetate, formate, citrate, pyruvate, and lactate. The reductase activity was optimal at pH 7.0 with NADH as the electron donor. The aerobic and anaerobic Cr(VI)-reduction enhanced by 0.1 mM NADH were respectively 3.5 and 3.4 times as high as that without adding NADH. The Cr(VI) reductase activity was inhibited by Mn2+, Cd2+, Fe3+, and Hg2+, whereas Cu2+ enhanced the chromate reductase activity by 29% aerobically and 33% anaerobically. The aerobic and anaerobic specific Michaelis–Menten constant K m of S12 fraction was estimated to be 64.95 and 47.65 μmol L−1, respectively. The soluble S150 fractions showed similar activity to S12 and could reduce 39.7% and 53.4% of Cr(VI) after 1 h of incubation aerobically and anaerobically while the periplasmic contents showed no obvious reduction activity, suggesting an effective enzymatic mechanism of Cr(VI) reduction in the cytoplasmic fractions of the bacterium. Results suggest that the enzymatic reduction of Cr(VI) could be useful for Cr(VI) detoxification in wastewater.

Keywords

Pannonibacter phragmitetus LSSE-09 Cr(VI) reduction Chromate reductase Cytoplasmic fractions 

Notes

Acknowledgments

This work was financially supported by the National Basic Research Program of China (no. 2007CB613507).

References

  1. 1.
    Patterson, J. W. (1975). Wastewater treatment technology (1st ed.). New York: Ann Arbor Science Publishers Inc.Google Scholar
  2. 2.
    Ackerley, D. F., Gonzalez, C. F., Keyhan, M., Blake, R., & Matin, A. (2004). Environmental Microbiology, 6, 851–860.CrossRefGoogle Scholar
  3. 3.
    McLean, J., & Beveridge, T. J. (2001). Applied and Environmental Microbiology, 67, 1076–1084.CrossRefGoogle Scholar
  4. 4.
    Wang, Y. T., & Shen, H. (1995). Journal of Industrial Microbiology, 14, 159–163.CrossRefGoogle Scholar
  5. 5.
    Kratochvil, D., Pimentel, P., & Volesky, B. (1998). Environmental Science and Technology, 32, 2693–2698.CrossRefGoogle Scholar
  6. 6.
    Park, C. H., Keyhan, M., Wielinga, B., Fendorf, S., & Matin, A. (2000). Applied and Environmental Microbiology, 66, 1788–1795.CrossRefGoogle Scholar
  7. 7.
    Ackerley, D. F., Gonzalez, C. F., Park, C. H., Blake, R., II, Keyhan, M., & Matin, A. (2004). Applied and Environmental Microbiology, 70, 873–882.CrossRefGoogle Scholar
  8. 8.
    Okeke, B. (2008). Journal of Industrial Microbiology and Biotechnology, 35, 1571–1579.CrossRefGoogle Scholar
  9. 9.
    Okeke, B., Laymon, J., Crenshaw, S., & Oji, C. (2008). Biological Trace Element Research, 123, 229–241.CrossRefGoogle Scholar
  10. 10.
    Camargo, F. A. O., Okeke, B. C., Bento, F. M., & Frankenberger, W. T. (2003). Applied Microbiology and Biotechnology, 62, 569–573.CrossRefGoogle Scholar
  11. 11.
    Michel, C., Brugna, M., Aubert, C., Bernadac, A., & Bruschi, M. (2001). Applied Microbiology and Biotechnology, 55, 95–100.CrossRefGoogle Scholar
  12. 12.
    Cheung, K. H., & Gu, J.-D. (2003). Chemosphere, 52, 1523–1529.CrossRefGoogle Scholar
  13. 13.
    Pal, A., Dutta, S., & Paul, A. K. (2005). Current Microbiology, 51, 327–330.CrossRefGoogle Scholar
  14. 14.
    Ishibashi, Y., Cervantes, C., & Silver, S. (1990). Applied and Environmental Microbiology, 56, 2268–2270.Google Scholar
  15. 15.
    Megharaj, M., Avudainayagam, S., & Naidu, R. (2003). Current Microbiology, 47, 51–54.CrossRefGoogle Scholar
  16. 16.
    Desai, C., Jain, K., & Madamwar, D. (2008). Process Biochemistry, 43, 713–721.CrossRefGoogle Scholar
  17. 17.
    Wang, P. C., Mori, T., Toda, K., & Ohtake, H. (1990). Journal of Bacteriology, 172, 1670–1672.Google Scholar
  18. 18.
    Bopp, L. H., & Ehrlich, H. L. (1988). Archives of Microbiology, 150, 426–431.CrossRefGoogle Scholar
  19. 19.
    Shen, H., & Wang, Y. T. (1993). Applied and Environmental Microbiology, 59, 3771–3777.Google Scholar
  20. 20.
    Timmis, K. N., Steffan, R. J., & Unterman, R. (1994). Annual Review of Microbiology, 48, 525–557.CrossRefGoogle Scholar
  21. 21.
    Chardin, B., Giudici-Orticoni, M. T., Luca, G., Guigliarelli, B., & Bruschi, M. (2003). Applied Microbiology and Biotechnology, 63, 315–321.CrossRefGoogle Scholar
  22. 22.
    Xu, L., Luo, M., Li, W., Wei, X., Xie, K., Liu, L., Jiang, C., & Liu, H. (2011). Journal of Hazardous Materials, 185, 1169–1176.CrossRefGoogle Scholar
  23. 23.
    Nossal, N. G., & Heppel, L. A. (1966). Journal of Biological Chemistry, 241, 3055–3062.Google Scholar
  24. 24.
    Greenberg, A. E., Trussell, R. R., & Clesceri, L. S. (1985). Standard methods for the examination of water and wastewater (16th ed.). New York: APHA.Google Scholar
  25. 25.
    Camargo, F. A. O., Bento, F. M., Okeke, B. C., & Frankenberger, W. T. (2003). Journal of Environmental Quality, 32, 1228–1233.CrossRefGoogle Scholar
  26. 26.
    Padan, E., Bibi, E., Ito, M., & Krulwich, T. A. (2005). Bba-Biomembranes, 1717, 67–88.CrossRefGoogle Scholar
  27. 27.
    Komori, K., Wang, P. C., Toda, K., & Ohtake, H. (1989). Applied Microbiology and Biotechnology, 31, 567–570.CrossRefGoogle Scholar
  28. 28.
    Myers, C. R., Carstens, B. P., Antholine, W. E., & Myers, J. M. (2000). Journal of Applied Microbiology, 88, 98–106.CrossRefGoogle Scholar
  29. 29.
    Elangovan, R., Abhipsa, S., Rohit, B., Ligy, P., & Chandraraj, K. (2006). Biotechnology Letters, 28, 247–252.CrossRefGoogle Scholar
  30. 30.
    Abe, F., Miura, T., Nagahama, T., Inoue, A., Usami, R., & Horikoshi, K. (2001). Biotechnology Letters, 23, 2027–2034.CrossRefGoogle Scholar
  31. 31.
    Elangovan, R., Philip, L., & Chandraraj, K. (2010). Applied Biochemistry and Biotechnology, 160, 81–97.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Lin Xu
    • 1
    • 2
    • 4
  • Mingfang Luo
    • 3
  • Chengying Jiang
    • 3
  • Xuetuan Wei
    • 1
    • 2
    • 4
  • Peng Kong
    • 1
    • 2
    • 4
  • Xiangfeng Liang
    • 1
    • 2
  • Junmei Zhao
    • 1
    • 2
  • Liangrong Yang
    • 1
    • 2
  • Huizhou Liu
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Green Process and Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingChina
  2. 2.National Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingChina
  3. 3.Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  4. 4.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations