Applied Biochemistry and Biotechnology

, Volume 166, Issue 4, pp 889–902 | Cite as

The Construction of Glucose Biosensor Based on Platinum Nanoclusters—Multiwalled Carbon Nanotubes Nanocomposites

  • Cheng Yan Wang
  • Xing Rong Tan
  • Shi Hong ChenEmail author
  • Fang Xin Hu
  • Hua An Zhong
  • Yu Zhang


One-step synthesis method was proposed to obtain the nanocomposites of platinum nanoclusters and multiwalled carbon nanotubes (PtNCs–MWNTs), which were used as a novel immobilization matrix for the enzyme to fabricate glucose biosensor. The fabrication process of the biosensor was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, atomic force microscopy and scanning electron microscope. Due to the favorable characteristic of PtNCs–MWNTs nanocomposites, the biosensor exhibited good characteristics, such as wide linear range (3.0 μM–12.1 mM), low detection limit (1.0 μM), high sensitivity (12.8 μA mM−1), rapid response time (within 6 s). The apparent Michaelis–Menten constant (\( K_m^{\text{app}} \)) is 2.1 mM. The performance of the resulting biosensor is more prominent than that of most of the reported glucose biosensors. Furthermore, it was demonstrated that this biosensor can be used for the assay of glucose in human serum samples.


Biosensor Platinum nanoclusters Multiwalled carbon nanotubes Nanocomposites Glucose oxidase 



This work was supported by the National Natural Science Foundation of China (21075100), Key Lab of Chongqing Modern Analytical Chemistry (201004), the Doctor Foundation of Southwest University (SWUB2008048) and the Fundamental Research Funds for the Central Universities (XDJK2009C082).


  1. 1.
    Liu, X. Q., Shi, L. H., Niu, W. X., Li, H. J., & Xu, G. B. (2008). Amperometric glucose biosensor based on single-walled carbon nanohorns. Biosensors and Bioelectronics, 23, 1887–1890.CrossRefGoogle Scholar
  2. 2.
    Fu, Y. C., Chen, C., Xie, Q. J., Xu, X. H., Zou, C., Zhou, Q. M., Tan, L., Tang, H., Zhang, Y. Y., & Yao, S. Z. (2008). Immobilization of enzymes through one-pot chemical preoxidation and electropolymerization of dithiols in enzyme-containing aqueous suspensions to develop biosensorswith improved performance. Analytical Chemistry, 80, 5829–5838.CrossRefGoogle Scholar
  3. 3.
    Sljukic, B., Banks, C. E., Salter, C., Crossley, A., & Compton, R. G. (2006). Electrochemically polymerised composites of multi-walled carbon nanotubes and poly(vinylferrocene) and their use as modified electrodes: Application to glucose sensing. Analyst, 131, 670–677.CrossRefGoogle Scholar
  4. 4.
    Ballerstadt, R., Kholodnykh, A., Evans, C., Boretsky, A., Motamedi, M., Gowda, A., & McNichols, R. (2007). Affinity-based turbidity sensor for glucose monitoring by optical choherence tomography: Toward the development of an implantable sensor. Analytical Chemistry, 79, 6965–6974.CrossRefGoogle Scholar
  5. 5.
    Diem, P., Kalt, L., Haueter, U., Krinelke, L., Fajfr, R., Reihl, B., & Beyer, U. (2004). Clinical performance of a continuous viscometric affinity sensor for glucose. Diabetes Technology & Therapeutics, 6, 790–799.CrossRefGoogle Scholar
  6. 6.
    Malitesta, C., Losito, I., & Zambonin, P. G. (1999). Molecularly imprinted electrosynthesized polymers: New materials for biomimetic sensors. Analytical Chemistry, 71, 1366–1370.CrossRefGoogle Scholar
  7. 7.
    Chuang, C. W., & Shih, J. S. (2001). Preparation and application of immobilized C60-glucose oxidase enzyme in flullerence C60-coated piezoelectric quartz crystal glucose sensor. Sensors and Actuators B-Chemical, 81, 1–8.CrossRefGoogle Scholar
  8. 8.
    Gallego, R. G., Haseley, S. R., van Miegem, V. F. L., Vliegenthart, J. F. G., & Kamerling, J. P. (2004). Identification of carbohydrates binding to lectins by using surface plasmon resonance in combination with HPLC profiling. Glycobiology, 14, 373–386.CrossRefGoogle Scholar
  9. 9.
    Shi, Q. F., Han, E., Shan, D., Yao, W. J., & Xue, H. G. (2008). Development of a high analytical performance amperometric glucose biosensor based on glucose oxidase immobilized in a composite matrix: Layered double hydroxides/chitosan. Bioprocess and Biosystems Engineering, 31, 519–526.CrossRefGoogle Scholar
  10. 10.
    Li, F., Feng, Y., Yang, L. M., Li, L., Tang, C. F., & Tang, B. (2011). A selective novel non-enzyme glucose amperometric biosensor based on lectin–sugar binding on thionine modified electrode. Biosensors and Bioelectronics, 26, 2489–2494.CrossRefGoogle Scholar
  11. 11.
    Xu, Y., & Lin, X. (2007). Selectively attaching Pt-nano-clusters to the open ends and defect sites on carbon nanotubes for electrochemical catalysis. Electrochimica Acta, 52, 5140–5149.CrossRefGoogle Scholar
  12. 12.
    Welch, C. M., & Compton, R. G. (2006). The use of nanoparticles in electroanalysis: A review. Analytical and Bioanalytical Chemistry, 384, 601–619.CrossRefGoogle Scholar
  13. 13.
    Raimondi, F., Scherer, G. G., Kötz, R., & Wokaun, A. (2005). Nanoparticles in energy technology: Examples from electrochemistry and catalysis. Angewandte Chemie International Edition, 44, 2190–2209.CrossRefGoogle Scholar
  14. 14.
    Lin, Y., & Finke, R. G. (1994). Novel polyoxoanion- and Bu4N+-stabilized, isolable, and redissolvable, 20-30-.ANG. Ir300-900 nanoclusters: The kinetically controlled synthesis, characterization, and mechanism of formation of organic solvent-soluble, reproducible size, and reproducible catalytic activity metal nanoclusters. Journal of the American Chemical Society, 116, 8335–8353.CrossRefGoogle Scholar
  15. 15.
    Li, W. J., Yuan, R., Chai, Y. Q., & Chen, S. H. (2010). Reagentless amperometric cancer antigen 15–3 immunosensor based on enzyme-mediated direct electrochemistry. Biosensors and Bioelectronics, 25, 2548–2552.CrossRefGoogle Scholar
  16. 16.
    Zhao, Z. W., Chen, X. J., Tay, B. K., Chen, J. S., Han, Z. J., & Khor, K. A. (2007). A novel amperometric biosensor based on ZnO:Co nanoclusters for biosensing glucose. Biosensors and Bioelectronics, 23, 135–139.CrossRefGoogle Scholar
  17. 17.
    Balasubramanian, K., & Burghard, M. (2006). Biosensors based on carbon nano-tubes. Analytical and Bioanalytical Chemistry, 385, 452–468.CrossRefGoogle Scholar
  18. 18.
    Xiong, W., Du, F., Liu, Y., Perez, A. J., Supp, M., Ramakrishnan, T. S., Dai, L. M., & Jiang, L. (2010). 3-D Carbon nanotube structures used as high performance catalyst for oxygen reduction reaction. Journal of the American Chemical Society, 132, 15839–15841.CrossRefGoogle Scholar
  19. 19.
    Iijiman, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58.CrossRefGoogle Scholar
  20. 20.
    Wang, J., Gu, M., Di, J., Gao, Y., Wu, Y., & Tu, Y. (2007). A carbon nanotube/silica sol–gel architecture for immobilization of horseradish peroxidase for electrochemical biosensor. Bioprocess and Biosystems Engineering, 30, 289–296.CrossRefGoogle Scholar
  21. 21.
    Ishikawa, F. N., Stauffer, B., Caron, D. A., & Zhou, C. W. (2009). Rapid and label-free cell detection by metal-cluster-decorated carbon nanotube biosensors. Biosensors and Bioelectronics, 24, 2967–2972.CrossRefGoogle Scholar
  22. 22.
    Lordi, V., Yao, N., & Wei, J. (2001). Method for supporting platinum on single-walled carbon nanotube for a selective hydrogenationcatalyst. Chemistry of Materials, 13, 733–737.CrossRefGoogle Scholar
  23. 23.
    Chu, X., Duan, D. X., Shen, G. L., & Yu, R. Q. (2007). Amperometric glucose biosensor based on electrodeposition of platinum nanoparticles onto covalently immobilized carbon nanotube electrode. Talanta, 71, 2040–2047.CrossRefGoogle Scholar
  24. 24.
    Li, J. J., Yuan, R., Chai, Y. Q., & Che, X. (2010). Fabrication of a novel glucose biosensor based on Pt nanoparticles-decorated iron oxide-multiwall carbon nanotubes magnetic composite. Journal of Molecular Catalysis B: Enzymatic, 66, 8–14.CrossRefGoogle Scholar
  25. 25.
    Yang, M. H., Yang, Y. H., Liu, Y. L., Shen, G. L., & Yu, R. Q. (2006). Platinum nanoparticles-doped sol–gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosensors and Bioelectronics, 21, 1125–1131.CrossRefGoogle Scholar
  26. 26.
    Lin, Y. H., Cui, X. L., Yen, C., & Wai, C. M. (2005). Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells. The Journal of Physical Chemistry. B, 109, 14410–14415.CrossRefGoogle Scholar
  27. 27.
    Kim, S., Jung, Y., & Park, S. J. (2008). Preparation and electrochemical behaviors of platinum nanocluster catalysts deposited on plasma-treated carbon nanotube supports. Colloids and Surfaces A, 313–314, 189–192.Google Scholar
  28. 28.
    Liu, Y., Wang, M. K., Zhao, F., Xu, Z. A., & Dong, S. J. (2005). The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosensors and Bioelectronics, 21, 984–988.CrossRefGoogle Scholar
  29. 29.
    Wen, D., Zou, X. Q., Liu, Y., Shang, L., & Dong, S. J. (2009). Nanocomposite based on depositing platinum nanostructure onto carbon nanotubes through a one-pot, facile synthesis method for amperometric sensing. Talanta, 79, 1233–1237.CrossRefGoogle Scholar
  30. 30.
    Yang, J., Zhang, R. Y., Xu, Y., He, P. G., & Fang, Y. Z. (2008). Direct electrochemistry study of glucose oxidase on Pt nanoparticle-modified aligned carbon nanotubes electrode by the assistance of chitosan–CdS and its biosensoring for glucose. Electrochemistry Communications, 10, 1889–1892.CrossRefGoogle Scholar
  31. 31.
    Kang, X. H., Mai, Z. B., Zou, X. Y., Cai, P. X., & Mo, J. Y. (2008). Glucose biosensors based on platinum nanoparticles-deposited carbon nanotubes in sol–gel chitosan/silica hybrid. Talanta, 74, 879–886.CrossRefGoogle Scholar
  32. 32.
    Yuan, L., Yang, M. H., Qu, F. L., Shen, G. L., & Yu, R. Q. (2008). Seed-mediated growth of platinum nanoparticles on carbon nanotubes for the fabrication of electrochemical biosensors. Electrochimica Acta, 53, 3559–3565.CrossRefGoogle Scholar
  33. 33.
    Kang, X. H., Mai, Z. B., Zou, X. Y., Cai, P. X., & Mo, J. Y. (2007). A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold–platinum alloy nanoparticles/multiwall carbon nanotubes. Analytical Biochemistry, 369, 71–79.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Cheng Yan Wang
    • 1
  • Xing Rong Tan
    • 2
  • Shi Hong Chen
    • 1
    Email author
  • Fang Xin Hu
    • 1
  • Hua An Zhong
    • 1
  • Yu Zhang
    • 1
  1. 1.Key Lab of Chongqing Modern Analytical Chemistry, Education Ministry Key Laboratory on Luminescence and Real-Time AnalysisCollege of Chemistry and Chemical Engineering, Southwest UniversityChongqingChina
  2. 2.Department of Endocrinology9th People’s Hospital of ChongqingChongqingChina

Personalised recommendations