Advertisement

Applied Biochemistry and Biotechnology

, Volume 166, Issue 4, pp 866–877 | Cite as

Start-up of Completely Autotrophic Nitrogen Removal Over Nitrite Enhanced by Hydrophilic-Modified Carbon Fiber

  • You-Peng ChenEmail author
  • Shan Li
  • Yun-Fang Ning
  • Na-Na Hu
  • Hai-Hua Cao
  • Fang Fang
  • Jin-Song Guo
Article

Abstract

In order to assess the effects of the surface hydrophilicity of supports on the biofilm formation and evaluate the performance of completely autotrophic nitrogen removal over nitrite (CANON) process in a sequencing batch biofilm reactor (SBBR), unmodified activity carbon fibers (ACFs) and ACFs hydrophilic modified by heat treatment were used as supports. CANON process was initiated in a SBBR from conventional activated sludge. An operation temperature of 32 ± 2 °C, dissolved oxygen (DO) level at 1.5 mg L−1 and free ammonia (FA) concentration with 3.98–15.93 mg L−1 were maintained in the SBBR. Fourier transform infrared (FT-IR) spectra and Boehm’s neutralizing titration exhibited that modified ACFs had more oxygen-containing groups than unmodified ACFs. Larger biofilm growth on the modified surfaces examined by scanning electron microscopy and biofilm’s total dry weight, and the biofilm on the modified surfaces were more active, compared with those on the unmodified surfaces. This study demonstrates the hydrophilic-modified ACFs have better biological affinity than unmodified ACFs. Maximal total nitrogen removal rate of 0.088 k g N m−3 day−1 was achieved for the CANON process on day 80, indicating the CANON process was successfully started up. Apart from supports, the strategies of DO supplying and controlling FA concentration were also keys in starting up the CANON process within a shorter period.

Keywords

CANON Biofilm Activity carbon fibers Hydrophilic 

Notes

Acknowledgment

We would like to thank the Fundamental Research Funds for the Central Universities (CDJZR10210001) for financial support.

References

  1. 1.
    Sliekers, A. O., Derwort, N., Gomez, J. L. C., Strous, M., Kuenen, J. G., & Jetten, M. S. M. (2002). Water Research, 36, 2475–2482.CrossRefGoogle Scholar
  2. 2.
    Ahn, Y. H. (2006). Process Biochemistry, 41, 1709–1721.CrossRefGoogle Scholar
  3. 3.
    Jetten, M. S. M., Wagner, M., Fuerst, J., Van Loosdrecht, M., Kuenen, G., & Strous, M. (2001). Current Opinion in Biotechnology, 12, 283–288.CrossRefGoogle Scholar
  4. 4.
    Prosser, J. I. (1989). Advances in Microbial Physiology, 30, 125–181.CrossRefGoogle Scholar
  5. 5.
    Zhang, Z. J., Chen, S. H., Wu, P., Lin, C. F., & Luo, H. Y. (2010). Bioresource Technology, 101, 6309–6314.CrossRefGoogle Scholar
  6. 6.
    Zhang, Z. Y., Zhou, J. T., Wang, J., Guo, H. Y., & Tong, J. (2006). Process Biochemistry, 41, 599–608.CrossRefGoogle Scholar
  7. 7.
    Gieseke, A., Arnz, P., Amann, R., & Schramm, A. (2002). Water Research, 36, 501–509.CrossRefGoogle Scholar
  8. 8.
    Strous, M., Heijnen, J. J., Kuenen, J. G., & Jetten, M. S. M. (1998). Applied Microbiology and Biotechnology, 50, 589–596.CrossRefGoogle Scholar
  9. 9.
    Wilderer, P. A., & Mcswain, B. S. (2004). Water Science and Technology, 50, 1–10.Google Scholar
  10. 10.
    Fernández, I., Vázquez-Padín, J. R., Mosquera-Corral, A., Campos, J. L., & Méndez, R. (2008). Biochemical Engineering Journal, 42, 308–313.CrossRefGoogle Scholar
  11. 11.
    Liu, Y. (1995). Colloid Surface B, 5, 213–219.CrossRefGoogle Scholar
  12. 12.
    Lackner, S., Holmberg, M., Terada, A., Kingshott, P., & Smets, B. F. (2009). Water Research, 43, 3469–3479.CrossRefGoogle Scholar
  13. 13.
    Khan, M. M. T., Ista, L. K., Lopez, G. P., & Schuler, A. J. (2011). Environmental Science and Technology, 45, 1055–1060.CrossRefGoogle Scholar
  14. 14.
    Sousa, M., Azeredo, J., Feijo, J., & Oliveira, R. (1997). Biotechnology Techniques, 11, 751–754.CrossRefGoogle Scholar
  15. 15.
    Fernándeza, M. R., Casabonaa, M. G., Anupamab, V. N., Krishnakumarb, B., Curutchetc, G. A., & Bernika, D. L. (2010). Colloid Surface B, 81, 289–296.CrossRefGoogle Scholar
  16. 16.
    Chavant, P., Martinie, B., Meylheuc, T., Bellon-Fontaine, M. N., & Hebraud, M. (2002). Applied and Environmental Microbiology, 68, 728–737.CrossRefGoogle Scholar
  17. 17.
    Ryu, Z. Y., Rong, H. Q., Zheng, J. T., Wang, M. Z., & Zhang, B. J. (2002). Carbon, 40, 1144–1147.CrossRefGoogle Scholar
  18. 18.
    Vlaeminck, S. E., Terada, A., Smets, B. F., Van Der Linden, D., Boon, N., Verstraete, W., et al. (2009). Environmental Science and Technology, 43, 5035–5041.CrossRefGoogle Scholar
  19. 19.
    Boehm, H. P. (1994). Carbon, 32, 759–769.CrossRefGoogle Scholar
  20. 20.
    Boehm, H. P. (2002). Carbon, 40, 145–149.CrossRefGoogle Scholar
  21. 21.
    Lazarova, V., Pierzo, V., Fontvielle, D., & Manem, J. (1994). Water Science and Technology, 29, 345–354.Google Scholar
  22. 22.
    Chinese NEPA. (2002). Water and wastewater monitoring methods (4th ed.). Beijing: Chinese Environmental Science Press.Google Scholar
  23. 23.
    Yamamoto, T., Takaki, K., Koyama, T., & Furukawa, K. (2008). Bioresource Technology, 99, 6419–6425.CrossRefGoogle Scholar
  24. 24.
    Third, K. A., Olav Sliekers, A., Kuenen, J. G., & Jetten, M. S. M. (2001). Systematic and Applied Microbiology, 24, 588–596.CrossRefGoogle Scholar
  25. 25.
    Lai, J. N., Sunderland, B., Xue, J. M., Yan, S., Zhao, W. J., Folkard, M., et al. (2006). Applied Surface Science, 252, 3375–3379.CrossRefGoogle Scholar
  26. 26.
    Chen, Y., Zhao, Z. Q., & Liu, Y. M. (2008). Applied Surface Science, 254, 5497–5500.CrossRefGoogle Scholar
  27. 27.
    Kim, Y. H., Cho, J. H., Lee, Y. W., & Lee, W. K. (1997). Biotechnology Techniques, 11, 773–776.CrossRefGoogle Scholar
  28. 28.
    Xu, Z. Y., Zeng, G. M., Yang, Z. H., Xiao, Y., Cao, M., Sun, H. S., et al. (2010). Bioresource Technology, 101, 79–86.CrossRefGoogle Scholar
  29. 29.
    Joss, A., Salzgeber, D., Eugster, J., Konig, R., Rottermann, K., Burger, S., et al. (2009). Environmental Science and Technology, 43, 5301–5306.CrossRefGoogle Scholar
  30. 30.
    Li, X. M., Xiao, Y., & Liao, D. X. (2011). Applied Biochemistry and Biotechnology, 163, 1053–1065.CrossRefGoogle Scholar
  31. 31.
    Wang, L., Zhu, J., & Curtis, M. (2011). Applied Biochemistry and Biotechnology, 163, 362–372.CrossRefGoogle Scholar
  32. 32.
    Wiesmann, U. (1994). Advances in Biochemical Engineering/Biotechnology, 51, 113–154.CrossRefGoogle Scholar
  33. 33.
    Anthonisen, A. C., Loehr, R. C., Prakasam, T. B., & Srinath, E. G. (1976). Journal of the Water Pollution Control Federation, 48, 835–852.Google Scholar
  34. 34.
    Strous, M., van Gerven, E., Kuenen, J. G., & Jetten, M. (1997). Applied and Environmental Microbiology, 63, 2446–2448.Google Scholar
  35. 35.
    Third, K. A., Paxman, J., Schmid, M., Strous, M., Jetten, M. S. M., & Cord-Ruwisch, R. (2005). Microbiology Ecology, 49, 236–244.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • You-Peng Chen
    • 1
    Email author
  • Shan Li
    • 1
  • Yun-Fang Ning
    • 1
  • Na-Na Hu
    • 1
  • Hai-Hua Cao
    • 1
  • Fang Fang
    • 1
  • Jin-Song Guo
    • 1
  1. 1.Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment of MOEChongqing UniversityChongqingChina

Personalised recommendations