Skip to main content
Log in

Start-up of Completely Autotrophic Nitrogen Removal Over Nitrite Enhanced by Hydrophilic-Modified Carbon Fiber

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In order to assess the effects of the surface hydrophilicity of supports on the biofilm formation and evaluate the performance of completely autotrophic nitrogen removal over nitrite (CANON) process in a sequencing batch biofilm reactor (SBBR), unmodified activity carbon fibers (ACFs) and ACFs hydrophilic modified by heat treatment were used as supports. CANON process was initiated in a SBBR from conventional activated sludge. An operation temperature of 32 ± 2 °C, dissolved oxygen (DO) level at 1.5 mg L−1 and free ammonia (FA) concentration with 3.98–15.93 mg L−1 were maintained in the SBBR. Fourier transform infrared (FT-IR) spectra and Boehm’s neutralizing titration exhibited that modified ACFs had more oxygen-containing groups than unmodified ACFs. Larger biofilm growth on the modified surfaces examined by scanning electron microscopy and biofilm’s total dry weight, and the biofilm on the modified surfaces were more active, compared with those on the unmodified surfaces. This study demonstrates the hydrophilic-modified ACFs have better biological affinity than unmodified ACFs. Maximal total nitrogen removal rate of 0.088 k g N m−3 day−1 was achieved for the CANON process on day 80, indicating the CANON process was successfully started up. Apart from supports, the strategies of DO supplying and controlling FA concentration were also keys in starting up the CANON process within a shorter period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sliekers, A. O., Derwort, N., Gomez, J. L. C., Strous, M., Kuenen, J. G., & Jetten, M. S. M. (2002). Water Research, 36, 2475–2482.

    Article  CAS  Google Scholar 

  2. Ahn, Y. H. (2006). Process Biochemistry, 41, 1709–1721.

    Article  CAS  Google Scholar 

  3. Jetten, M. S. M., Wagner, M., Fuerst, J., Van Loosdrecht, M., Kuenen, G., & Strous, M. (2001). Current Opinion in Biotechnology, 12, 283–288.

    Article  CAS  Google Scholar 

  4. Prosser, J. I. (1989). Advances in Microbial Physiology, 30, 125–181.

    Article  CAS  Google Scholar 

  5. Zhang, Z. J., Chen, S. H., Wu, P., Lin, C. F., & Luo, H. Y. (2010). Bioresource Technology, 101, 6309–6314.

    Article  CAS  Google Scholar 

  6. Zhang, Z. Y., Zhou, J. T., Wang, J., Guo, H. Y., & Tong, J. (2006). Process Biochemistry, 41, 599–608.

    Article  CAS  Google Scholar 

  7. Gieseke, A., Arnz, P., Amann, R., & Schramm, A. (2002). Water Research, 36, 501–509.

    Article  CAS  Google Scholar 

  8. Strous, M., Heijnen, J. J., Kuenen, J. G., & Jetten, M. S. M. (1998). Applied Microbiology and Biotechnology, 50, 589–596.

    Article  CAS  Google Scholar 

  9. Wilderer, P. A., & Mcswain, B. S. (2004). Water Science and Technology, 50, 1–10.

    CAS  Google Scholar 

  10. Fernández, I., Vázquez-Padín, J. R., Mosquera-Corral, A., Campos, J. L., & Méndez, R. (2008). Biochemical Engineering Journal, 42, 308–313.

    Article  Google Scholar 

  11. Liu, Y. (1995). Colloid Surface B, 5, 213–219.

    Article  CAS  Google Scholar 

  12. Lackner, S., Holmberg, M., Terada, A., Kingshott, P., & Smets, B. F. (2009). Water Research, 43, 3469–3479.

    Article  CAS  Google Scholar 

  13. Khan, M. M. T., Ista, L. K., Lopez, G. P., & Schuler, A. J. (2011). Environmental Science and Technology, 45, 1055–1060.

    Article  CAS  Google Scholar 

  14. Sousa, M., Azeredo, J., Feijo, J., & Oliveira, R. (1997). Biotechnology Techniques, 11, 751–754.

    Article  CAS  Google Scholar 

  15. Fernándeza, M. R., Casabonaa, M. G., Anupamab, V. N., Krishnakumarb, B., Curutchetc, G. A., & Bernika, D. L. (2010). Colloid Surface B, 81, 289–296.

    Article  Google Scholar 

  16. Chavant, P., Martinie, B., Meylheuc, T., Bellon-Fontaine, M. N., & Hebraud, M. (2002). Applied and Environmental Microbiology, 68, 728–737.

    Article  CAS  Google Scholar 

  17. Ryu, Z. Y., Rong, H. Q., Zheng, J. T., Wang, M. Z., & Zhang, B. J. (2002). Carbon, 40, 1144–1147.

    Article  CAS  Google Scholar 

  18. Vlaeminck, S. E., Terada, A., Smets, B. F., Van Der Linden, D., Boon, N., Verstraete, W., et al. (2009). Environmental Science and Technology, 43, 5035–5041.

    Article  CAS  Google Scholar 

  19. Boehm, H. P. (1994). Carbon, 32, 759–769.

    Article  CAS  Google Scholar 

  20. Boehm, H. P. (2002). Carbon, 40, 145–149.

    Article  CAS  Google Scholar 

  21. Lazarova, V., Pierzo, V., Fontvielle, D., & Manem, J. (1994). Water Science and Technology, 29, 345–354.

    CAS  Google Scholar 

  22. Chinese NEPA. (2002). Water and wastewater monitoring methods (4th ed.). Beijing: Chinese Environmental Science Press.

    Google Scholar 

  23. Yamamoto, T., Takaki, K., Koyama, T., & Furukawa, K. (2008). Bioresource Technology, 99, 6419–6425.

    Article  CAS  Google Scholar 

  24. Third, K. A., Olav Sliekers, A., Kuenen, J. G., & Jetten, M. S. M. (2001). Systematic and Applied Microbiology, 24, 588–596.

    Article  CAS  Google Scholar 

  25. Lai, J. N., Sunderland, B., Xue, J. M., Yan, S., Zhao, W. J., Folkard, M., et al. (2006). Applied Surface Science, 252, 3375–3379.

    Article  CAS  Google Scholar 

  26. Chen, Y., Zhao, Z. Q., & Liu, Y. M. (2008). Applied Surface Science, 254, 5497–5500.

    Article  CAS  Google Scholar 

  27. Kim, Y. H., Cho, J. H., Lee, Y. W., & Lee, W. K. (1997). Biotechnology Techniques, 11, 773–776.

    Article  CAS  Google Scholar 

  28. Xu, Z. Y., Zeng, G. M., Yang, Z. H., Xiao, Y., Cao, M., Sun, H. S., et al. (2010). Bioresource Technology, 101, 79–86.

    Article  CAS  Google Scholar 

  29. Joss, A., Salzgeber, D., Eugster, J., Konig, R., Rottermann, K., Burger, S., et al. (2009). Environmental Science and Technology, 43, 5301–5306.

    Article  CAS  Google Scholar 

  30. Li, X. M., Xiao, Y., & Liao, D. X. (2011). Applied Biochemistry and Biotechnology, 163, 1053–1065.

    Article  CAS  Google Scholar 

  31. Wang, L., Zhu, J., & Curtis, M. (2011). Applied Biochemistry and Biotechnology, 163, 362–372.

    Article  CAS  Google Scholar 

  32. Wiesmann, U. (1994). Advances in Biochemical Engineering/Biotechnology, 51, 113–154.

    Article  CAS  Google Scholar 

  33. Anthonisen, A. C., Loehr, R. C., Prakasam, T. B., & Srinath, E. G. (1976). Journal of the Water Pollution Control Federation, 48, 835–852.

    CAS  Google Scholar 

  34. Strous, M., van Gerven, E., Kuenen, J. G., & Jetten, M. (1997). Applied and Environmental Microbiology, 63, 2446–2448.

    CAS  Google Scholar 

  35. Third, K. A., Paxman, J., Schmid, M., Strous, M., Jetten, M. S. M., & Cord-Ruwisch, R. (2005). Microbiology Ecology, 49, 236–244.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank the Fundamental Research Funds for the Central Universities (CDJZR10210001) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Peng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YP., Li, S., Ning, YF. et al. Start-up of Completely Autotrophic Nitrogen Removal Over Nitrite Enhanced by Hydrophilic-Modified Carbon Fiber. Appl Biochem Biotechnol 166, 866–877 (2012). https://doi.org/10.1007/s12010-011-9476-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9476-8

Keywords

Navigation