Applied Biochemistry and Biotechnology

, Volume 166, Issue 4, pp 856–865 | Cite as

Improvement of Ethanol Yield from Glycerol via Conversion of Pyruvate to Ethanol in Metabolically Engineered Saccharomyces cerevisiae

  • Kyung Ok Yu
  • Ju Jung
  • Ahmad Bazli Ramzi
  • Seung Wook Kim
  • Chulhwan Park
  • Sung Ok HanEmail author


The conversion of low-priced glycerol to higher value products has been proposed as a way to improve the economic viability of the biofuels industry. In a previous study, the conversion of glycerol to ethanol in a metabolically engineered strain of Saccharomyces cerevisiae was accomplished by minimizing the synthesis of glycerol, the main by-product in ethanol fermentation processing. To further improve ethanol production, overexpression of the native genes involved in conversion of pyruvate to ethanol in S. cerevisiae was successfully accomplished. The overexpression of an alcohol dehydrogenase (adh1) and a pyruvate decarboxylase (pdc1) caused an increase in growth rate and glycerol consumption under fermentative conditions, which led to a slight increase of the final ethanol yield. The overall expression of the adh1 and pdc1 genes in the modified strains, combined with the lack of the fps1 and gpd2 genes, resulted in a 1.4-fold increase (about 5.4 g/L ethanol produced) in fps1Δgpd2Δ (pGcyaDak, pGupCas) (about 4.0 g/L ethanol produced). In summary, it is possible to improve the ethanol yield by overexpression of the genes involved in the conversion of pyruvate to ethanol in engineered S. cerevisiae using glycerol as substrate.


Glycerol Ethanol production Saccharomyces cerevisiae Alcohol dehydrogenase Pyruvate decarboxylase 



This work was supported by the Advanced Biomass R&D Center (ABC) of Korea grant funded by the Ministry of Education, Science and Technology (ABC-2010-0029799) and the Technology Development Program for Agriculture and Forestry, Ministry for Agriculture, Forestry and Fisheries, Republic of Korea (no. 309016–5).


  1. 1.
    Choi, W. J. (2008). Recent Patents on Biotechnology, 2, 173–180.CrossRefGoogle Scholar
  2. 2.
    Choi, W. J., Hartono, M. R., Chan, W. H., & Yeo, S. S. (2011). Applied Microbiology and Biotechnology, 89, 1255–1264.CrossRefGoogle Scholar
  3. 3.
    Conway, T., Osman, Y. A., & Ingram, L. O. (1987). Journal of Bacteriology, 169, 2327–2335.Google Scholar
  4. 4.
    Dinus, R. J. (2001). Applied Biochemistry and Biotechnology, 91–93, 23–34.CrossRefGoogle Scholar
  5. 5.
    Hong, W. K., Kim, C. H., Heo, S. Y., Luo, L. H., Oh, B. R., & Seo, J. W. (2010). Biotechnology Letters, 32, 1077–1082.CrossRefGoogle Scholar
  6. 6.
    Ingram, L. O., Conway, T., Clark, D. P., Sewell, G. W., & Preston, J. F. (1987). Applied and Environmental Microbiology, 53, 2420–2425.Google Scholar
  7. 7.
    Ishchuk, O. P., Voronovsky, A. Y., Stasyk, O. V., Gayda, G. Z., Gonchar, M. V., Abbas, C. A., & Sibirny, A. A. (2008). FEMS Yeast Research, 8, 1164–1174.CrossRefGoogle Scholar
  8. 8.
    Liu, L. M., Li, Y., & Chen, J. (2005). Wei Sheng Wu Xue Bao, 45, 77–80.Google Scholar
  9. 9.
    Liu, S., Dien, B. S., & Cotta, M. A. (2005). Current Microbiology, 50, 324–328.CrossRefGoogle Scholar
  10. 10.
    Liu, S., Dien, B. S., Nichols, N. N., Bischoff, K. M., Hughes, S. R., & Cotta, M. A. (2007). FEMS Microbiology Letters, 274, 291–297.CrossRefGoogle Scholar
  11. 11.
    Nikel, P. I., Ramirez, M. C., Pettinari, M. J., Mendez, B. S., & Galvagno, M. A. (2010). Journal of Applied Microbiology, 109, 492–504.Google Scholar
  12. 12.
    Oh, B. R., Seo, J. W., Heo, S. Y., Hong, W. K., Luo, L. H., Joe, M. H., Park, D. H., & Kim, C. H. (2011). Bioresource Technology, 102, 3918–3922.CrossRefGoogle Scholar
  13. 13.
    Palmer, T. N., Wober, G., & Whelan, W. J. (1973). European Journal of Biochemistry, 39, 601–612.CrossRefGoogle Scholar
  14. 14.
    Robertson, G. H., Doyle, L. R., & Pavlath, A. E. (1983). Biotechnology and Bioengineering, 25, 3133–3148.CrossRefGoogle Scholar
  15. 15.
    Romero, S., Merino, E., Bolivar, F., Gosset, G., & Martinez, A. (2007). Applied and Environmental Microbiology, 73, 5190–5198.CrossRefGoogle Scholar
  16. 16.
    Tokuhiro, K., Ishida, N., Nagamori, E., Saitoh, S., Onishi, T., Kondo, A., & Takahashi, H. (2009). Applied Microbiology and Biotechnology, 82, 883–890.CrossRefGoogle Scholar
  17. 17.
    Wenger, J. I., & Bernofsky, C. (1971). Biochimica et Biophysica Acta, 227, 479–490.Google Scholar
  18. 18.
    Wiesenfeld, M., Schimpfessel, L., & Crokaert, R. (1975). Biochimica et Biophysica Acta, 405, 500–512.Google Scholar
  19. 19.
    Yazdani, S. S., & Gonzalez, R. (2007). Current Opinion in Biotechnology, 18, 213–219.CrossRefGoogle Scholar
  20. 20.
    Yu, K. O., Kim, S. W., & Han, S. O. (2010). Bioresource Technology, 101, 4157–4161.CrossRefGoogle Scholar
  21. 21.
    Yu, K. O., Kim, S. W., & Han, S. O. (2010). Journal of Biotechnology, 150, 209–214.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kyung Ok Yu
    • 1
  • Ju Jung
    • 1
  • Ahmad Bazli Ramzi
    • 1
  • Seung Wook Kim
    • 2
  • Chulhwan Park
    • 3
  • Sung Ok Han
    • 1
    Email author
  1. 1.School of Life Sciences and BiotechnologyKorea UniversitySeoulRepublic of Korea
  2. 2.Department of Chemical and Biological EngineeringKorea UniversitySeoulRepublic of Korea
  3. 3.Department of Chemical EngineeringKwangwoon UniversitySeoulRepublic of Korea

Personalised recommendations