Advertisement

Applied Biochemistry and Biotechnology

, Volume 166, Issue 4, pp 839–855 | Cite as

Process Evaluation of Enzymatic Hydrolysis with Filtrate Recycle for the Production of High Concentration Sugars

  • Ying Xue
  • Jannov Rusli
  • Hou-min Chang
  • Richard Phillips
  • Hasan JameelEmail author
Article

Abstract

Process simulation and lab trials were carried out to demonstrate and confirm the efficiency of the concept that recycling hydrolysate at low total solid enzymatic hydrolysis is one of the options to increase the sugar concentration without mixing problems. Higher sugar concentration can reduce the capital cost for fermentation and distillation because of smaller retention volume. Meanwhile, operation cost will also decrease for less operating volume and less energy required for distillation. With the computer simulation, time and efforts can be saved to achieve the steady state of recycling process, which is the scenario for industrial production. This paper, to the best of our knowledge, is the first paper discussing steady-state saccharification with recycling of the filtrate form enzymatic hydrolysis to increase sugar concentration. Recycled enzymes in the filtrate (15–30% of the original enzyme loading) resulted in 5–10% higher carbohydrate conversion compared to the case in which recycled enzymes were denatured. The recycled hydrolysate yielded 10% higher carbohydrate conversion compared to pure sugar simulated hydrolysate at the same enzyme loading, which indicated hydrolysis by-products could boost enzymatic hydrolysis. The high sugar concentration (pure sugar simulated) showed inhibition effect, since about 15% decrease in carbohydrate conversion was observed compared with the case with no sugar added. The overall effect of hydrolysate recycling at WinGEMS simulated steady-state conditions with 5% total solids was increasing the sugar concentration from 35 to 141 g/l, while the carbohydrate conversion was 2% higher for recycling at steady state (87%) compared with no recycling strategy (85%). Ten percent and 15% total solid processes were also evaluated in this study.

Keywords

Steady state Process simulation Enzymatic hydrolysis Stream recycling Hydrolysis booster 

Notes

Acknowledgments

This work was funded by the Wood-to-Ethanol Research Consortium (WERC). WERC members are American Process, Andritz, Arborgen, KBR Engineers, Catchlight, Evolution Resources, and Japan Pulp and Paper Research Institute. Enzymes were kindly provided by Novozymes and Genencor. The authors are grateful to these companies.

References

  1. 1.
    Hamelinck, C. N., van Hooijdonk, G., & Faaij, A. P. C. (2005). Biomass Bioenerg, 28, 384–410.CrossRefGoogle Scholar
  2. 2.
    Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Bioresource Technology, 101, 4851–4861.CrossRefGoogle Scholar
  3. 3.
    Zhang, Y. P., Ding, S., Mielenz, J. R., Cui, J., Elander, R. T., Laser, M., et al. (2007). Biotechnology and Bioengineering, 97–2, 214–223.CrossRefGoogle Scholar
  4. 4.
    Johnson, D., & Elander, R. (2008). Pretreatments for enhanced digestibility of feedstocks in biomass recalcitrance. Oxford: Blackwell.Google Scholar
  5. 5.
    Carvalheiro, F., Duarte, L. C., & Gírio, F. M. (2008). Journal of Scientific and Industrial Research, 67, 849–864.Google Scholar
  6. 6.
    Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.CrossRefGoogle Scholar
  7. 7.
    Boussaid, A., & Saddler, J. N. (1999). Enzyme and Microbial Technology, 24, 138–143.CrossRefGoogle Scholar
  8. 8.
    Zacchi, G., & Axelsson, A. (1989). Biotechnology and Bioengineering, 34, 223–233.CrossRefGoogle Scholar
  9. 9.
    Wingren, A., Galbe, M., & Zacchi, G. (2003). Biotechnology Progress, 19, 1109–1117.CrossRefGoogle Scholar
  10. 10.
    Hoyer, K., Galbe, M., & Zacchi, G. (2009). Journal of Chemical Technology and Biotechnology, 84, 570–577.CrossRefGoogle Scholar
  11. 11.
    Galbe, M., & Zacchi, G. (2002). Applied Microbiology and Biotechnology, 59, 618–628.CrossRefGoogle Scholar
  12. 12.
    Zhu, S., Wu, Y., Yu, Z., Liao, J., & Zhang, Y. (2005). Process Biochemistry, 40, 3082–3086.CrossRefGoogle Scholar
  13. 13.
    Cara, C., Moya, M., Ballesteros, I., Negro, M., Gonza’lez, A., & Ruiz, E. (2007). Process Biochemistry, 42, 1003–1009.CrossRefGoogle Scholar
  14. 14.
    Xue, Y., Jameel, H., Phillips, R., Chang, H. (2011). Journal of Industrial and Engineering Chemistry, 11, 132–140. doi: 10.1016/j.jiec.2011.11.132.Google Scholar
  15. 15.
    Pan, X. J., Arato, C., Gilkes, N., Gregg, D., Mabee, W., Pye, K., et al. (2005). Biotechnology and Bioengineering, 90, 473–481.CrossRefGoogle Scholar
  16. 16.
    Duff, S. J. B., & Murray, W. D. (1996). Bioresource Technology, 55, 1–33.CrossRefGoogle Scholar
  17. 17.
    Tu, M., Chandra, R. P., & Saddler, J. N. (2007). Biotechnology Progress, 23, 1130–1137.CrossRefGoogle Scholar
  18. 18.
    Lu, Y., Yang, B., Gregg, D., Saddler, J. N., & Mansfield, S. D. (2002). Applied Biochemistry and Biotechnology, 98–100, 641–654.CrossRefGoogle Scholar
  19. 19.
    Ramos, L. P., & Saddler, J. N. (1994). Applied Biochemistry and Biotechnology, 193, 45–46.Google Scholar
  20. 20.
    Lee, D., Yu, A. H. C., & Saddler, J. N. (1995). Biotechnology and Bioengineering, 45, 328–336.CrossRefGoogle Scholar
  21. 21.
    Gregg, D. J., Boussaid, A., & Saddler, J. N. (1998). Bioresour. Ecol., 63, 7–12.CrossRefGoogle Scholar
  22. 22.
    TAPPI. (2004). T200 om-88, TAPPI test methods. Atlanta: TAPPI.Google Scholar
  23. 23.
    Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.CrossRefGoogle Scholar
  24. 24.
    Oliveira, K., Cardoso, M., & Nicolato, R. (2010). Latin American Appl Research., 40, 81–90.Google Scholar
  25. 25.
    Atkins, M., Morrison, A., Walmsley, M., & Riley, J. (2010). Appita J., 63, 281–287.Google Scholar
  26. 26.
    Sigma-Aldrich. (2006). Sigma-Aldrich product information, Bradford reagent, product number B6916. Oakville: Sigma-Aldrich.Google Scholar
  27. 27.
    Sutcliffe, R., & Saddler, J. N. (1986). Biotechnology and Bioengineering, 17, 749–762.Google Scholar
  28. 28.
    Tan, L. U. L., Yu, E. K. C., Campbell, N., & Saddler, J. N. (1986). Applied Microbiology and Biotechnology, 25, 250–255.Google Scholar
  29. 29.
    Lynd, L. R., van Weimer, P. J., Zyl, W. H., & Pretorius, I. S. (2002). Microbiology and Molecular Biology, 66, 506–577.CrossRefGoogle Scholar
  30. 30.
    Jørgensen, H., Kristensen, J. B., & Felby, C. (2007). Biofuels Bioprod Bioref, 1, 119–134.CrossRefGoogle Scholar
  31. 31.
    Mes-Hartree, M., & Saddler, J. N. (1983). Biotechnology Letters, 5, 531–536.CrossRefGoogle Scholar
  32. 32.
    Lamed, R., Kenig, R., & Setter, E. (1985). Enzyme and Microbial Technology, 7, 37–41.CrossRefGoogle Scholar
  33. 33.
    Palmqvist, E., Hahn-Hagerdal, B., Galbe, M., & Zacchi, G. (1996). Enzyme and Microbial Technology, 19, 470–476.CrossRefGoogle Scholar
  34. 34.
    Clark, T. A., & Mackie, K. L. (1984). Journal of Chemical Technology and Biotechnology, 34B, 101–110.Google Scholar
  35. 35.
    Larsson, S., Palmqvist, E., Hahn-Hagerdal, B., Tengborg, C., Stenberg, K., & Zacchi, G. (1999). Enzyme and Microbial Technology, 24, 151–159.CrossRefGoogle Scholar
  36. 36.
    Quinlana, R. J., Sweeneya, M. D., Leggiob, L. L., Ottenb, H., Poulsenb, J. C. N., Johansenc, K. S., et al. (2011). PNAS, 44, 108–113.Google Scholar
  37. 37.
    Clesceri, L. S., Sinitsyn, A. P., Saunders, A. M., & Bungay, H. R. (1985). Applied Biochemistry and Biotechnology, 11, 433–443.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ying Xue
    • 1
  • Jannov Rusli
    • 1
  • Hou-min Chang
    • 1
  • Richard Phillips
    • 1
  • Hasan Jameel
    • 1
    Email author
  1. 1.Department of Forest BiomaterialsNorth Carolina State UniversityRaleighUSA

Personalised recommendations