Skip to main content
Log in

Production and Characteristics of the Whole-Cell Lipase from Organic Solvent Tolerant Burkholderia sp. ZYB002

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The thermostable and organic solvent tolerant whole-cell lipase (WCL) was produced by Burkholderia sp. ZYB002 with broad spectrum organic solvent tolerance. The production medium of the WCL was primarily optimized, which resulted in the maximum activity of 22.8 U/mL and the 5.1-fold increase of the WCL yield. The optimized culture medium was as follows (% w/v or v/v): soybean meal 2, soybean oil 0.5, manganese sulfate 0.1, K2HPO4 0.1, olive oil 0.5, initial pH 6.0, inoculum density 2, liquid volume 35 mL in 250-mL Erlenmeyer flask, and incubation time 24 h. The biochemical characterization of the WCL from Burkholderia sp. ZYB002 was determined, and the results showed that the optimal pH and temperature for lipolytic activity of the WCL was 8.0 and 65°C, respectively. The WCL was stable at temperature up to 70°C for 1 h and retained 79.2% of its original activity. The WCL was highly stable in the pH range from 3.0 to 8.5 for 6 h. Ca2+, K+, Na+, NO 3 , etc. ions stimulated its lipolytic activity, whereas Zn2+ ion caused inhibition effect. The WCL was also relatively stable in n-butanol at a final concentration of 50% (v/v) for 24 h. However, the WCL was strongly inhibited in Triton X-100 at a final concentration of 10% (v/v). The WCL with thermal resistance and organic solvent tolerance showed its great potential in various green industrial chemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gotor-Fernandez, V., Brieva, R., & Gotor, V. (2006). Lipases: Useful biocatalysts for the preparation of pharmaceuticals. Journal of Molecular Catalysis B: Enzymatic, 40, 111–120. doi:10.1016/j.molcatb.2006.02.010.

    Article  CAS  Google Scholar 

  2. Hasan, F., Shah, A. A., & Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39, 235–251. doi:10.1016/j.enzmictec.2005.10.016.

    Article  CAS  Google Scholar 

  3. Sugihara, A., Ueshima, M., Shimada, Y., Tsunasawa, S., & Tominaga, Y. (1992). Purification and characterization of a novel thermostable lipase from Pseudomonas cepacia. Journal of Biochemistry (Tokyo), 112, 598–603.

    CAS  Google Scholar 

  4. Tomić, S., Bertoša, B., Kojić-Prodić, B., & Kolosvary, I. (2004). Stereoselectivity of Burkholderia cepacia lipase towards secondary alcohols: Molecular modelling and 3D QSAR approach. Tetrahedron-Asymmetry, 15, 1163–1172. doi:10.1016/j.tetasy.2004.02.016.

    Article  Google Scholar 

  5. Wang, X. Q., Yu, X. W., & Xu, Y. (2009). Homologous expression, purification and characterization of a novel high-alkaline and thermal stable lipase from Burkholderia cepacia ATCC 25416. Enzyme and Microbial Technology, 45, 94–102. doi:10.1016/j.enzmictec.2009.05.004.

    Article  CAS  Google Scholar 

  6. Kim, K. K., Song, H. K., Shin, D. H., Hwang, K. Y., & Suh, S. W. (1997). The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure, 5, 173–185. doi:10.1016/S0969-2126(97)00177-9.

    Article  CAS  Google Scholar 

  7. Rathi, P., Goswami, V. K., Sahai, V., & Gupta, R. (2002). Statistical medium optimization and production of a hyperthermostable lipase from Burkholderia cepacia in a bioreactor. Journal of Applied Microbiology, 93, 930–936. doi:10.1046/j.1365-2672.2002.01780.x.

    Article  CAS  Google Scholar 

  8. Yu, L. J., Xu, Y., Wang, X. Q., & Yu, X. W. (2007). Highly enantioselective hydrolysis of DL-menthyl acetate to L-menthol by whole-cell lipase from Burkholderia cepacia ATCC 25416. Journal of Molecular Catalysis B: Enzymatic, 47, 149–154. doi:10.1016/j.molcatb.2007.04.011.

    Article  CAS  Google Scholar 

  9. Schepp, C., Kermasha, S., Michalski, M. C., & Morin, A. (1997). Production, partial purification and characterisation of lipases from Pseudomonas fragi CRDA 037. Process Biochemistry, 32, 225–232. doi:10.1016/S0032-9592(96)00065-9.

    Article  Google Scholar 

  10. Wilhelm, S., Tommassen, J., & Jager, K. E. (1999). A novel lipolytic enzyme located in the outer membrane of Pseudomonas aeruginosa. Journal of Bacteriology, 181, 6977–6986.

    CAS  Google Scholar 

  11. Sun, S. Y., & Xu, Y. (2009). Membrane-bound ‘synthetic lipase’ specifically cultured under solid-state fermentation and submerged fermentation by Rhizopus chinensis: A comparative investigation. Bioresource Technology, 100, 1336–1342. doi:10.1016/j.biortech.2008.07.051.

    Article  CAS  Google Scholar 

  12. Ni, Y., & Chen, R. R. (2004). Accelerating whole-cell biocatalysis by reducing outer membrane permeability barrier. Biotechnology and Bioengineering, 87, 804–811. doi:10.1002/bit.20202.

    Article  CAS  Google Scholar 

  13. Fukuda, H., Hama, S., Tamalampudi, S., & Noda, H. (2008). Whole-cell biocatalysts for biodiesel fuel production. Trends in Biotechnology, 26, 668–673. doi:10.1016/j.tibtech.2008.08.001.

    Article  CAS  Google Scholar 

  14. Wang, D., Xu, Y., & Teng, Y. (2007). Synthetic activity enhancement of membrane-bound lipase from Rhizopus chinensis by pretreatment with isooctane. Bioprocess and Biosystems Engineering, 30, 147–155. doi:10.1007/s00449-006-0097-5.

    Article  Google Scholar 

  15. Hlavsova, K., Zarevucka, M., Wimmer, Z., Mackova, M., & Sovova, H. (2009). Geotrichum candidum 4013: Extracellular lipase versus cell-bound lipase from the single strain. Journal of Molecular Catalysis B: Enzymatic, 61, 188–193. doi:10.1016/j.molcatb.2009.06.012.

    Article  CAS  Google Scholar 

  16. Sardessai, Y. N., & Bhosle, S. (2004). Industrial potential of organic solvent tolerant bacteria. Biotechnology Progress, 20, 655–660. doi:10.1021/bp0200595.

    Article  CAS  Google Scholar 

  17. Shu, Z. Y., Lin, R. F., Jiang, H., Zhang, Y. F., Wang, M. Z., & Huang, J. Z. (2009). A rapid and efficient method for directed screening of lipase-producing Burkholderia cepacia complex strains with organic solvent tolerance from rhizosphere. Journal of Bioscience and Bioengineering, 107, 658–661. doi:10.1016/j.jbiosc.2009.01.011.

    Article  CAS  Google Scholar 

  18. Saxena, R. K., Davidson, W. S., Sheoran, A., & Giri, B. (2003). Purification and characterization of an alkaline thermostable lipase from Aspergillus carneus. Process Biochemistry, 39, 239–247. doi:10.1016/S0032-9592(03)00068-2.

    Article  CAS  Google Scholar 

  19. Kordel, M., Hofmann, B., Schomburg, D., & Schmid, R. D. (1991). Extracellular lipase of Pseudomonas sp. strain ATCC 21808: Purification, characterization, crystallization, and preliminary X-ray diffraction data. Journal of Bacteriology, 173, 4836–4841.

    CAS  Google Scholar 

  20. Tan, T. W., Zhang, M., Xu, J. L., & Zhang, J. (2004). Optimization of culture conditions and properties of lipase from Penicillium camembertii Thom PG-3. Process Biochemistry, 39, 1495–1502. doi:10.1016/S0032-9592(03)00296-6.

    Article  CAS  Google Scholar 

  21. Che Omar, I., & Ilias, N. (1996). Characteristics of cell-bound lipase production by a newly isolated strain of Aspergillus flavus. Pertanika Journal of Science & Technology, 4, 1–9.

    Google Scholar 

  22. Gupta, N., Sahai, V., & Gupta, R. (2007). Alkaline lipase from a novel strain Burkholderia multivorans: Statistical medium optimization and production in a bioreactor. Process Biochemistry, 42, 518–526. doi:10.1016/j.procbio.2006.10.006.

    Article  CAS  Google Scholar 

  23. Liu, C. H., Lu, W. B., & Chang, J. S. (2006). Optimizing lipase production of Burkholderia sp. by response surface methodology. Process Biochemistry, 41, 1940–1944. doi:10.1016/j.procbio.2006.04.013.

    Article  CAS  Google Scholar 

  24. Gerritse, G., Hommes, R. W. J., & Quax, W. J. (1998). Development of a lipase fermentation process that uses a recombinant Pseudomonas alcaligenes strain. Applied and Environmental Microbiology, 64, 2644–2651.

    CAS  Google Scholar 

  25. Krzeslak, J., Gerritse, G., Merkerk, R. V., Cool, R. H., & Quax, W. J. (2008). Lipase expression in Pseudomonas alcaligenes is under the control of a two-component regulatory system. Applied and Environmental Microbiology, 74, 1402–1411. doi:10.1128/AEM.01632-07.

    Article  CAS  Google Scholar 

  26. Iwai, M., & Tsujisaka, Y. (1984). Fungal lipase. In H. L. Brockman (Ed.), Lipases (pp. 443–469). Amsterdam: Elsevier.

    Google Scholar 

  27. Dandavate, V., Jinjala, J., Keharia, H., & Madamwar, D. (2009). Production, partial purification and characterization of organic solvent tolerant lipase from Burkholderia multivorans V2 and its application for ester synthesis. Bioresource Technology, 100, 3374–3381. doi:10.1016/j.biortech.2009.02.011.

    Article  CAS  Google Scholar 

  28. Boekema Bouke, K. H. L., Beselin, A., Breuer, M., Hauer, B., Koster, M., Rosenau, F., et al. (2007). Hexadecane and Tween 80 stimulate lipase production in Burkholderia glumae by different mechanisms. Applied and Environmental Microbiology, 73, 3838–3844. doi:10.1128/AEM.00097-07.

    Article  CAS  Google Scholar 

  29. Dalal, S., Singh, P. K., Raghava, S., Rawat, S., & Gupta, M. N. (2008). Purification and properties of the alkaline lipase from Burkholderia cepacia ATCC 25609. Biotechnology and Applied Biochemistry, 51, 23–31. doi:10.1042/BA20070186.

    Article  CAS  Google Scholar 

  30. Sharma, A. K., Tiwari, R. P., & Hoondal, G. S. (2001). Properties of a thermostable and solvent stable extracellular lipase from a Pseudomonas sp. AG-8. Journal of Basic Microbiology, 41, 363–366. doi:10.1002/1521-4028(200112).

    Article  CAS  Google Scholar 

  31. Sharma, R., Soni, S. K., Vohra, R. M., Gupta, L. K., & Gupta, J. K. (2002). Purification and characterisation of a thermostable alkaline lipase from a new thermophilic Bacillus sp. RSJ-1. Process Biochemistry, 37, 1075–1084. doi:10.1016/S0032-9592(01)00316-8.

    Article  CAS  Google Scholar 

  32. Gupta, R., Gupta, N., & Rathi, P. (2004). Bacterial lipases: An overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 64, 763–781. doi:10.1007/s00253-004-1568-8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National High-Technology Project (“863” Project) of P. R. China (No.2007AA100703), the National Natural Science Funds of People’s Republic of China (No. 30870545), and the Natural Science Funds for Distinguished Young Scholar of Fujian Province (No. 2009J06013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng-Yu Shu or Jian-Zhong Huang.

Additional information

Zheng-Yu Shu and Ji-Guang Wu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shu, ZY., Wu, JG., Cheng, LX. et al. Production and Characteristics of the Whole-Cell Lipase from Organic Solvent Tolerant Burkholderia sp. ZYB002. Appl Biochem Biotechnol 166, 536–548 (2012). https://doi.org/10.1007/s12010-011-9446-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9446-1

Keywords

Navigation