Skip to main content

Advertisement

Log in

Additional Paper Waste in Pulping Sludge for Biohydrogen Production by Heat-Shocked Sludge

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Dark anaerobic fermentation is an interesting alternative method for producing biohydrogen (H2) as a renewable fuel because of its low cost and various usable organic substrates. Pulping sludge from wastewater treatment containing plentiful cellulosic substrate could be feasibly utilized for H2 production by dark fermentation. The objective of this study was to investigate the optimal proportion of pulping sludge to paper waste, the optimal initial pH, and the optimal ratio of carbon and nitrogen (C/N) for H2 production by anaerobic seed sludge pretreated with heat. The pulping sludge was pretreated with NaOH solution at high temperature and further hydrolyzed with crude cellulase. Pretreatment of the pulping sludge with 3% NaOH solution under autoclave at 121 °C for 2 h, hydrolysis with 5 FPU crude cellulase at 50 °C, and pH 4.8 for 24 h provided the highest reducing sugar production yield (229.68 ± 2.09 mg/gTVS). An initial pH of 6 and a C/N ratio of 40 were optimal conditions for H2 production. Moreover, the supplement of paper waste in the pulping sludge enhanced the cumulative H2 production yield. The continuous hydrogen production was further conducted in a glass reactor with nylon pieces as supporting media and the maximum hydrogen production yield was 151.70 ml/gTVS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pant, K. K., & Gupta, R. B. (2009). Fundamentals and use of hydrogen as a fuel. In R. B. Gupta (Ed.), Hydrogen fuel: production, transport, and storage (pp. 3–32). Boca Raton: CRC Press Taylor & Francis Group.

    Google Scholar 

  2. Kothari, R., Buddhi, D., & Sawhney, R. L. (2008). Comparison of environmental and economic aspects of various hydrogen production methods. Renewable and Sustainable Energy Reviews, 12, 553–563.

    Article  CAS  Google Scholar 

  3. Das, D., & Veziroğlu, T. N. (2001). Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy, 26, 13–28.

    Article  CAS  Google Scholar 

  4. Khanal, S. K. (2008). Biohydrogen production: fundamentals, challenges, and operation strategies for enhanced yield. In S. K. Khanal (Ed.), Anaerobic biotechnology for bioenergy production: principles and applications (pp. 189–219). Iowa: John Wiley & Sons, Inc.

    Chapter  Google Scholar 

  5. David, B. L., Rumana, I., Nazim, C., & Richard, S. (2006). Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. International Journal of Hydrogen Energy, 31, 1496–1503.

    Article  Google Scholar 

  6. Datar, R., Huang, J., Maness, P. C., Mohagheghi, A., Czernil, S., & Chornet, E. (2007). Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. International Journal of Hydrogen Energy, 32, 932–939.

    Article  CAS  Google Scholar 

  7. Pattra, S., Sangyoka, S., Boonmee, M., & Reungsang, A. (2008). Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. International Journal of Hydrogen Energy, 33, 5256–5265.

    Article  CAS  Google Scholar 

  8. Zhu, J. Y., & Pan, X. J. (2010). Wood biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresource Technology, 101, 4992–5002.

    Article  CAS  Google Scholar 

  9. Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technology, 101, 4851–4861.

    Article  CAS  Google Scholar 

  10. Teramoto, Y., Lee, S. H., & Endo, T. (2008). Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking. Bioresource Technology, 99, 8856–8863.

    Article  CAS  Google Scholar 

  11. Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18.

    Article  CAS  Google Scholar 

  12. Fernandes, T. V., Klaasse Bos, G. J., Zeeman, G., Sanders, J. P. M., & van Lier, J. B. (2009). Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass. Bioresource Technology, 100, 2575–2579.

    Article  CAS  Google Scholar 

  13. Li, Y. F., Ren, N. Q., Chen, Y., & Zheng, G. X. (2007). Ecological mechanism of fermentative hydrogen production by bacteria. International Journal of Hydrogen Energy, 32, 755–760.

    Article  CAS  Google Scholar 

  14. Khanal, S. K., Chen, W. H., Li, L., & Sung, S. (2005). Biological hydrogen production: effects of pH and intermediated products. International Journal of Hydrogen Energy, 29, 1123–1131.

    Google Scholar 

  15. Luo, G., Xie, L., Zou, Z., Zhou, Q., & Wand, J. Y. (2010). Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: effects of temperature and pH. Applied Energy, 87, 3710–3717.

    Article  CAS  Google Scholar 

  16. Ren, N., Wang, A., Cao, G., Xu, J., & Gao, L. (2009). Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnology Advances, 27, 1051–1060.

    Article  CAS  Google Scholar 

  17. Cao, G. L., Ren, N. Q., Wang, A. J., Guo, W. Q., Xu, J. F., & Liu, B. F. (2010). Effect of lignocelluloses-derived inhibitors on growth and hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2009.11.127.

  18. Adams, R.C., MacLean, F.S., Dixon, J.K., Bennett, F.M., Martin, G.I. and Lough, R.C. (1951). The utilization of organic wastes in N.Z. Second interim report of the interdepartmental committee. 396–424.

  19. Ginkel, S. V., Sung, S., & Lay, J. J. (2001). Biohydrogen production as a function of pH and substrate concentration. Environmental Science and Technology, 35, 4726–4730.

    Article  CAS  Google Scholar 

  20. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  21. Ghose, T. K. (1989). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268.

    Article  Google Scholar 

  22. Chairattanamanokorn, P., Penthamkeerati, P., Reungsang, A., Lo, Y. C., Lu, W. B., & Chang, J. S. (2009). Production of biohydrogen from hydrolyzed bagasse with thermally preheated sludge. International Journal of Hydrogen Energy, 34, 7612–7617.

    Article  CAS  Google Scholar 

  23. Sharmas, S. K., Kalra, K. L., & Grewal, H. S. (2002). Enzymatic saccharification of pretreated sunflower stalks. Biomass Bioenergy, 23, 237–243.

    Article  Google Scholar 

  24. De Vrije, T., De Haas, G. G., Tan, G. B., Keijsers, E. R. P., & Claassen, P. A. M. (2002). Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. International Journal of Hydrogen Energy, 27, 1381–1390.

    Article  Google Scholar 

  25. QuiZhang, Z., & Weimin, C. (2008). Enzymatic hydrolysis of alkali-pretreated rice straw by Trichoderma reesei ZM4-F3. Biomass Bioenergy, 32, 1130–1135.

    Article  Google Scholar 

  26. Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research, 48, 3713–3729.

    Article  CAS  Google Scholar 

  27. Valdez-Vazquez, I., & Poggi-Varaldo, H. M. (2009). Alkalinity and high total solids affecting H2 production from organic solid waste by anaerobic consortia. International Journal of Hydrogen Energy, 34, 3633–3646.

    Google Scholar 

  28. Pan, C. M., Fan, Y. T., & Xing, Y. (2007). Statistical optimization of process parameters on bio-hydrogen production from glucose by Clostridium sp. Fanp2. Bioresource Technology, 99, 3146–3157.

    Article  Google Scholar 

  29. Modan, S. V., Bhaskar, Y. V., Krishna, P. M., Rao, N. C., Babu, V. L., & Sarna, P. N. (2007). Biohydrogen production from chemical wastewater as substrate by selectively enriched anaerobic mixed consortia: influence of fermentation pH and substrate composition. International Journal of Hydrogen Energy, 32, 2286–2295.

    Article  Google Scholar 

  30. Fan, Y. T., Zhang, G. S., Guo, X. Y., Xing, Y., & Fan, M. H. (2006). Biohydrogen production from beer less biomass by cow dung compost. Biomass Bioenergy, 30, 493–496.

    Article  CAS  Google Scholar 

  31. Fan, Y. T., Xing, Y., Ma, H. C., Pan, C. M., & Hou, H. W. (2008). Enhanced cellulose-hydrogen production from corn stalk by lesser panda manure. International Journal of Hydrogen Energy, 33, 6058–6065.

    Article  CAS  Google Scholar 

  32. Lin, C. Y., & Lay, C. H. (2004). Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. International Journal of Hydrogen Energy, 29, 41–45.

    Article  CAS  Google Scholar 

  33. Karlsson, A., Vallin, L., & Ejlertsson, J. (2008). Effects of temperature, hydraulic retention time and hydrogen extraction rate on hydrogen production from the fermentation of food industry residues and manure. International Journal of Hydrogen Energy, 33, 953–962.

    Article  CAS  Google Scholar 

  34. Fan, Y. T., Zhang, Y. H., Zhang, S. F., Hou, H. W., & Ren, B. Z. (2006). Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresource Technology, 97, 500–505.

    Article  CAS  Google Scholar 

  35. Li, D., & Chen, H. (2007). Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation. International Journal of Hydrogen Energy, 32, 1742–1748.

    Article  CAS  Google Scholar 

  36. Ozkan, L., Erguder, T. H., & Demirer, G. N. (2010). Effects of pretreatment methods on solubilization of beet-pulp and bio-hydrogen production yield. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2010.10.006.

  37. Fan, Y., Guo, Y., Pan, C., & Hou, H. (2009). Bioconversion of aging corn to biohydrogen by dairy manure compost. Industrial and Engineering Chemistry Research, 48, 2493–2498.

    Article  CAS  Google Scholar 

  38. Kádár, Z., De Vrije, T., Budde, M. A. W., Szengyel, Z., Réczey, K., & Claassen, P. A. M. (2003). Hydrogen production from paper sludge hydrolysate. Applied Biochemistry and Biotechnology, 105–108, 557–566.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support by Thailand Research Fund through Grant Number MRG5080301.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prapaipid Chairattanamanokorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chairattanamanokorn, P., Tapananont, S., Detjaroen, S. et al. Additional Paper Waste in Pulping Sludge for Biohydrogen Production by Heat-Shocked Sludge. Appl Biochem Biotechnol 166, 389–401 (2012). https://doi.org/10.1007/s12010-011-9434-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9434-5

Keywords

Navigation