Skip to main content
Log in

Adding Value to the Oil Cake as a Waste from Oil Processing Industry: Production of Lipase and Protease by Candida utilis in Solid State Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Olive oil cake is a by-product from the olive oil processing industry and can be used for the lipase and protease production by Candida utilis in solid state fermentation. Different carbon and nitrogen sources were evaluated, and the results showed that the supplementation of the substrate with maltose and starch as carbon sources and yeast extract as a nitrogen source significantly increased the lipase production. The best results were obtained with maltose, whereas rather low lipase and protease activities were found with glucose and oleic acid. Response surface methodology and a five-level–three-factor central composite rotatable design were used to evaluate the effects of the initial moisture content, inoculum size and fermentation time on both lipase and protease activity levels. A lipase activity value of ≈25 U g-1 and a protease activity value of 110 U g-1 were obtained under the optimized fermentation conditions. An alkaline treatment of the substrate appeared to be efficient, leading to increases of 39% and 133% in the lipase and protease production, respectively. The results showed that the olive cake could be a good source for enzyme production by solid state fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alves, C. G., Lopes, M., Alves, M., & Belo, I. (2007). Journal of Biotechnology, 131, 133–187.

    Article  Google Scholar 

  2. Vlyssides, A. G., Loizides, M., & Karlis, P. K. (2004). Journal of Cleaner Production, 12, 603–611.

    Article  Google Scholar 

  3. Rigo, E., Ninow, J. L., Di Luccio, M., Oliveira, J. V., Polloni, A. E., Remonatto, D., et al. (2010). LWT- Food Science and Technology, 43, 1132–1137.

    Article  CAS  Google Scholar 

  4. Ramachandran, S., Singh, S. K., Larroche, C., Soccol, C. R., & Pandey, A. (2007). Bioresource Technology, 98, 2000–2009.

    Article  CAS  Google Scholar 

  5. Iandolo, D., Piscitelli, A., Sannia, G., & Faraco, V. (2011). Applied Biochemistry and Biotechnology, 163, 40–51.

    Article  CAS  Google Scholar 

  6. Pandey, A., Soccol, C. R., & Mitchell, D. (2000). Process Biochemistry, 35, 1153–1169.

    Article  CAS  Google Scholar 

  7. Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Biotechnology Advances, 19, 627–662.

    Article  CAS  Google Scholar 

  8. Sandhya, C., Sumantha, A., & Pandey, A. (2004). In A. Pandey, C. Webb, C. R. Soccol, & C. Larroche (Eds.), Enzyme Technology (pp. 312–325). New Delhi: Asiatech Publishers Inc.

    Google Scholar 

  9. Soares, V., Castilho, L. R., Bon, E. P. S., & Freire, D. M. G. (2005). Applied Biochemistry and Biotechnology, 121–124, 311–319.

    Article  Google Scholar 

  10. Alkan, H., Baysal, Z., Uyar, F., & Dogru, M. (2007). Applied Biochemistry and Biotechnology, 136, 183–192.

    Article  CAS  Google Scholar 

  11. Holker, U., Hofer, M., & Lenz, J. (2004). Applied Microbiology and Biotechnology, 64, 175–186.

    Article  CAS  Google Scholar 

  12. Colla, L. M., Rizzardi, J., Pinto, M. H., Reinehr, C. O., Bertolin, T. E., & Costa, J. A. V. (2010). Bioresource Technology, 101, 8308–8314.

    Article  CAS  Google Scholar 

  13. Castro, A. M., Andrea, T. W., Carvalho, D. F., Teixeira, M. M. P., Castilho, L. R., & Freire, D. M. G. (2011). Waste Biomass Valor, 2, 291–302.

    Article  CAS  Google Scholar 

  14. Kamini, N. R., Mala, J. G. S., & Puvanakrishnan, R. (1998). Process Biochemistry, 33, 505–511.

    Article  CAS  Google Scholar 

  15. Sandhya, C., Sumantha, A., Szakacs, G., & Pandey, A. (2005). Process Biochemistry, 40, 2689–2694.

    Article  CAS  Google Scholar 

  16. Kumar, S., Katiyar, N., Ingle, P., & Negi, S. (2011). Bioresource Technology, 102, 4909–4912.

    Article  CAS  Google Scholar 

  17. Benjamin, S., & Pandey, A. (1997). Acta Biotechnologica, 17, 241–251.

    Article  CAS  Google Scholar 

  18. Grbavcic, S. Z., Dimitrijevic-Brankovic, S. I., Bezbradica, D. I., Siler-Marinkovic, S. S., & Knezevic, Z. D. (2007). Journal of Serbia Chemical Society, 72, 757–765.

    Article  CAS  Google Scholar 

  19. Rajoka, M. I., Khan, S. H., Jabbar, M. A., Awan, M. S., & Hashmi, A. S. (2006). Bioresource Technology, 97, 1934–1941.

    Article  CAS  Google Scholar 

  20. Gelinas, P., & Barrette, J. (2007). Bioresource Technology, 98, 1138–1143.

    Article  CAS  Google Scholar 

  21. Cordenunsi, B. R., de Menezes, W. E., Genovese, M. I., Colli, C., de Souza, G. A., & Lajolo, F. M. (2004). Journal of Agricultural and Food Chemistry, 52, 3412–3416.

    Article  CAS  Google Scholar 

  22. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  23. Gould, J. M., Jasberg, B. K., & Cote, G. L. (1989). Cereal Chemistry, 66, 213–217.

    CAS  Google Scholar 

  24. Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for experimenters: an introduction to design, data analysis and model building. NJ: Wiley.

    Google Scholar 

  25. Sarath, G., de la Motte, R. S., & Wagner, F. W. (1989). In R. J. Beynon & J. S. Bond (Eds.), Proteolytic enzymes: a practical approach (pp. 25–55). Oxford: IRL Press.

    Google Scholar 

  26. Mari, I., Ehaliotis, C., Kotsou, M., Balis, C., & Georgakakis, D. (2003). Bioresource Technology, 87, 331–336.

    Article  CAS  Google Scholar 

  27. Dominguez, A., Costas, M., Longo, M. A., & Sanroman, A. (2003). Biotechnology Letters, 25, 1225–1229.

    Article  CAS  Google Scholar 

  28. Gutarra, M. L. E., Godoy, M. G., Maugeri, F., Rodrigues, M. I., Freire, D. M. G., & Castilho, L. R. (2009). Bioresource Technology, 100, 5249–5254.

    Article  CAS  Google Scholar 

  29. Muralidhar, R. V., Chirumamila, R. R., Marchant, R., & Nigam, P. (2001). Biochemical Engineering Journal, 9, 17–23.

    Article  CAS  Google Scholar 

  30. Luccio, M. D., Capra, F., Ribeiro, N. P., Vargas, G. D. L. P., Freire, D. M. G., & de Oliveira, D. (2004). Applied Biochemistry and Biotechnology, 113–116, 173–180.

    Article  Google Scholar 

  31. Godoy, M. G., Gutarra, M. L. E., Castro, A. M., Machado, O. L. T., & Freire, D. M. G. (2011). Journal of Industrial Microbiology and Biotechnology, 38, 945–953.

    Article  CAS  Google Scholar 

  32. Fawzi, E. M. (2009). Annals of Microbiology, 59(4), 755–761.

    Article  CAS  Google Scholar 

  33. Mahanta, N., Gupta, A., & Khare, S. K. (2008). Bioresource Technology, 99, 1729–1735.

    Article  CAS  Google Scholar 

  34. Vishwanatha, K. S., Appu Rao, A. G., & Singh, S. A. (2010). Journal of Industrial Microbiology and Biotechnology, 37, 129–138.

    Article  CAS  Google Scholar 

  35. Chutmanop, J., Chuichulcherm, S., Chisti, Y., & Srinophakun, P. (2008). Journal of Chemical Technology and Biotechnology, 83, 1012–1018.

    Article  CAS  Google Scholar 

  36. Haddar, A., Fakhfakh-Zouari, N., Hmidet, N., Frikha, F., Nasri, M., & Sellami Kamoun, A. J. (2010). Bioscience and Bioengineering, 110, 288–294.

    Article  CAS  Google Scholar 

  37. Christen, P., Auria, R., Vega, C., Villegas, E., & Revah, S. (1993). Biotechnology Advances, 11, 549–557.

    Article  CAS  Google Scholar 

  38. Rao, P. V., Jayaraman, K., & Lakshmanan, C. M. (1993). Process Biochemistry, 28, 385–389.

    Article  CAS  Google Scholar 

  39. Fickers, P., Nicaud, J. M., Gaillardin, C., Destain, J., & Thonart, P. (2004). Journal of Applied Microbiology, 96, 742–749.

    Article  CAS  Google Scholar 

  40. Turki, S., Kraeim, I. B., Weeckers, F., Thonart, P., & Kallel, H. (2009). Bioresource Technology, 100, 2724–2731.

    Article  CAS  Google Scholar 

  41. Zhao, X., Zhou, Y., Zheng, G., & Liu, D. (2010). Applied Biochemistry and Biotechnology, 160, 1557–1571.

    Article  CAS  Google Scholar 

  42. Paranthaman, R., Alagusundaram, K., & Indhumathi, J. (2009). World Journal of Agricultural Sciences, 5, 308–312.

    CAS  Google Scholar 

  43. Vargas, G. D. L. P., Treichel, H., Oliveira, D., Beneti, S. C., Freire, D. M. G., & Luccio, M. D. (2008). Journal of Chemical Technology and Biotechnology, 83, 47–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant number III 46010 from the Ministry of the Education and Science, Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zorica Knežević-Jugović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moftah, O.A.S., Grbavčić, S., Žuža, M. et al. Adding Value to the Oil Cake as a Waste from Oil Processing Industry: Production of Lipase and Protease by Candida utilis in Solid State Fermentation. Appl Biochem Biotechnol 166, 348–364 (2012). https://doi.org/10.1007/s12010-011-9429-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9429-2

Keywords

Navigation