Skip to main content
Log in

Selection of a New Whole Cell Biocatalyst for the Synthesis of 2-Deoxyribose 5-Phosphate

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

2-Deoxyribose 5-phosphate (DR5P) is a key intermediate in the biocatalyzed preparation of deoxyribonucleosides. Therefore, DR5P production by means of simpler, cleaner, and economic pathways becomes highly interesting. One strategy involves the use of bacterial whole cells containing DR5P aldolase as biocatalyst for the aldol addition between acetaldehyde and d-glyceraldehyde 3-phosphate or glycolytic intermediates that in situ generate the acceptor substrate. In this work, diverse microorganisms capable of synthesizing DR5P were selected by screening several bacteria genera. In particular, Erwinia carotovora ATCC 33260 was identified as a new biocatalyst that afforded 14.1-mM DR5P starting from a cheap raw material like glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Ghosh, R. K., Ghosh, S. M., & Chawla, S. (2011). Expert Opinion on Pharmacotherapy, 12, 31–46.

    Article  CAS  Google Scholar 

  2. Bobeck, D. R., Schinazi, R. F., & Coats, S. J. (2010). Antiviral Therapy, 15, 935–950.

    Article  CAS  Google Scholar 

  3. De Clercq, E. (2010). Current Opinion in Pharmacology, 10, 507–515.

    Article  Google Scholar 

  4. Aljarah, M., Couturier, S., Mathé, C., & Périgaud, C. (2008). Bioorganic & Medicinal Chemistry, 16, 7436–7442.

    Article  CAS  Google Scholar 

  5. Barai, V. N., Zinchenko, A. I., Eroshevskaya, L. A., Zhernosek, E. V., Balzarini, J., De Clercq, E., et al. (2003). Nucleosides, Nucleotides & Nucleic Acids, 22, 751–753.

    Article  CAS  Google Scholar 

  6. Furman, P. A., Fyfe, J. A., St Clair, M. H., Weinhold, K., Rideout, J. L., Freeman, G. A., et al. (1986). Proceedings of the National Academy of Sciences of the United States of America, 83, 8333–8337.

    Article  CAS  Google Scholar 

  7. Ichicawa, E., & Kato, K. (2001). Current Medicinal Chemistry, 8, 385–423.

    Google Scholar 

  8. Townsend, L. B., & Tipson, R. S. (1986). Nucleic acid chemistry. New York: Wiley.

    Google Scholar 

  9. Lewkowicz, E. S., & Iribarren, A. M. (2006). Current Organic Chemistry, 10, 1197–1215.

    Article  CAS  Google Scholar 

  10. Nóbile, M., Terreni, M., Iribarren, A. M., & Lewkowicz, E. (2010). Biocatalyst Biotransformation, 28, 395–402.

    Article  Google Scholar 

  11. Medici, R., Lewkowicz, E., & Iribarren, A. M. (2006). Journal of Molecular Catalysis B: Enzymatic, 39, 40–44.

    Article  CAS  Google Scholar 

  12. MacDonald, D. L., & Fletcher, H. G., Jr. (1961). Journal of the American Chemical Society, 84, 1262–1265.

    Article  Google Scholar 

  13. Prasad, A. K., Trikha, S., & Parmar, V. S. (1999). Bioorganic Chemistry, 27, 135–154.

    Article  CAS  Google Scholar 

  14. Taverna-Porro, M., Bouvier, L. A., Pereira, C. A., Montserrat, J. M., & Iribarren, A. M. (2008). Tetrahedron Letters, 49, 2642–2645.

    Article  CAS  Google Scholar 

  15. Clapés, P., Fessner, W. D., Sprenger, J. A., & Samland, A. K. (2010). Current Opinion in Chemical Biology, 14, 154–167.

    Article  Google Scholar 

  16. Brovetto, M., Gamenara, D., Saenz Mendez, P., & Seoane, G. A. (2011). Chemical Reviews, 111, 4346–4403.

    Article  CAS  Google Scholar 

  17. Barbas, C. F., III, Wang, Y.-F., & Wong, C.-H. (1990). Journal of the American Chemical Society, 112, 2013–2014.

    Article  CAS  Google Scholar 

  18. Wong, C.-H., Garcia-Junceda, E., Chen, L., Blanco, O., Gijsen, H. J. M., & Steensma, D. H. (1995). Journal of the American Chemical Society, 117, 3333–3339.

    Article  CAS  Google Scholar 

  19. Howells, J. D., & Lindstrom, E. S. (1958). Journal of Bacteriology, 75, 305–309.

    CAS  Google Scholar 

  20. Ogawa, J., Saito, K., Sakai, T., Horinouchi, N., Kawano, T., Matsumoto, S., et al. (2003). Bioscience, Biotechnology, and Biochemistry, 67, 933–936.

    Article  CAS  Google Scholar 

  21. Horinouchi, N., Ogawa, J., Sakai, T., Kawano, T., Matsumoto, S., Sasaki, M., et al. (2003). Applied and Environmental Microbiology, 69, 3791–3797.

    Article  CAS  Google Scholar 

  22. Horinouchi, N., Ogawa, J., Saito, K., Sakai, T., Kawano, T., Matsumoto, S., et al. (2006). Bioscience, Biotechnology, and Biochemistry, 70, 1371–1378.

    Article  CAS  Google Scholar 

  23. Burton, K. (1956). Biochemical Journal, 62, 315–323.

    CAS  Google Scholar 

  24. Hoffee, P. (1968). Journal of Bacteriology, 95, 449–457.

    Article  CAS  Google Scholar 

  25. Sgarrella, F., Poddie, F. P. A., Meloni, M. A., Sciola, L., Pippia, P., & Tozzi, M. G. (1997). Comparative Biochemistry and Physiology, 117B, 253–257.

    Google Scholar 

  26. Horinouchi, N., Ogawa, J., Kawano, T., Sakai, T., Saito, K., Sasaki, M., et al. (2006). Applied Microbiology and Biotechnology, 71, 615–621.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Universidad Nacional de Quilmes and Secretaría de Ciencia y Técnica de la Nación, Argentina. AMI and EL are research members and MP is a fellow of CONICET, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Lewkowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valino, A.L., Palazzolo, M.A., Iribarren, A.M. et al. Selection of a New Whole Cell Biocatalyst for the Synthesis of 2-Deoxyribose 5-Phosphate. Appl Biochem Biotechnol 166, 300–308 (2012). https://doi.org/10.1007/s12010-011-9425-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9425-6

Keywords

Navigation