Skip to main content
Log in

Decarboxylation of Ferulic Acid to 4-Vinyl Guaiacol by Streptomyces setonii

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

4-Vinyl guaiacol (3-methoxy 4-hydroxystyrene) can be obtained by decarboxylation of ferulic acid by the strain Streptomyces setonii ATCC 39116. The formation of this metabolite was favoured by microaerobic conditions and the culture medium employed, increasing progressively the product concentration from 543.3 up to 885.1 mg/l when aeration level was diminished, reaching a highest volumetric productivity of 70.4 mg/l h and a product yield of 1.11 mol/mol. The identity of the metabolite was confirmed by gas chromatography–mass spectrometry. A metabolic study of ferulic acid and the main degradation products (ferulic acid, 4-vinyl guaiacol, protocatechuic acid, vanillyl alcohol, vanillic acid and vanillin) suggested that ferulic acid was the only substrate capable to be transformed into 4-vinyl guaiacol by this strain of S. setonii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li, X., Yang, J., Li, X., Gu, W., Huang, J., & Zhang, K. (2008). Process Biochemistry, 43, 1132–1137.

    Article  CAS  Google Scholar 

  2. Baqueiro-Peña, I., Rodríguez-Serrano, G., González-Zamora, E., Augur, C., Loera, O., & Saucedo-Castañeda, G. (2010). Bioresource Technology, 101, 4721–4724.

    Article  Google Scholar 

  3. Narziss, L., Miedaner, H., & Nitzsche, F. (1990). Monatsschrift für Brauwissenschaft, 43, 96–100.

    CAS  Google Scholar 

  4. Mathew, S., & Abraham, T. E. (2006). Critical Reviews in Microbiology, 32, 115–125.

    Article  CAS  Google Scholar 

  5. Coghe, S., Benoot, K., Delvaux, F., Vanderhaegen, B., & Delvaux, F. R. (2004). Journal of Agricultural and Food Chemistry, 52, 602–608.

    Article  CAS  Google Scholar 

  6. Mathew, S., Abrahama, T. E., & Sudheesh, S. (2007). Journal of Molecular Catalysis B: Enzymatic, 44, 48–52.

    Article  CAS  Google Scholar 

  7. Abdelkafi, S., Labat, M., Gam, Z. B. A., Lorquin, J., Casalot, L., & Sayadi, S. (2008). World Journal of Microbiology and Biotechnology, 24, 675–680.

    Article  CAS  Google Scholar 

  8. Barghini, P., Di Gioia, D., Fava, F., & Ruzzi, M. (2007). Microbial Cell Factories, 6, 13.

    Article  Google Scholar 

  9. De Faveri, D., Torre, P., Aliakbarian, B., Domínguez, J. M., Perego, P., & Converti, A. (2007). Biochemical Engineering Journal, 36, 268–275.

    Article  Google Scholar 

  10. Karmakar, B., Vohra, R. M., Nandanwar, H., Sharma, P., Gupta, K. G., & Sobti, R. C. (2000). Journal of Biotechnology, 80, 195–202.

    Article  CAS  Google Scholar 

  11. Muheim, A., & Lerch, K. (1999). Applied Microbiology and Biotechnology, 51, 456–461.

    Article  CAS  Google Scholar 

  12. Priefert, H., Rabenhorst, J., & Steinbüchel, A. (2001). Applied Microbiology and Biotechnology, 56, 296–314.

    Article  CAS  Google Scholar 

  13. Lee, I., Volm, T. G., & Rosazza, J. P. N. (1998). Enzyme and Microbial Technology, 23, 261–266.

    Article  CAS  Google Scholar 

  14. Donaghy, J. A., Kelly, P. F., & McKay, A. (1999). Journal of the Science of Food and Agriculture, 79, 453–456.

    Article  CAS  Google Scholar 

  15. Seshime, Y., Praveen, R. J., Funii, I., & Kitamoto, K. (2005). Biochemical and Biophysical Research Communications, 337, 747–751.

    Article  CAS  Google Scholar 

  16. Huang, Z., Dostal, L., & Rosazza, J. P. N. (1993). Applied and Environmental Microbiology, 59, 2244–2250.

    CAS  Google Scholar 

  17. Hashikado, Y., Urashima, M., Yoshida, T., & Mizutani, J. (1993). Bioscience, Biotechnology, and Biochemistry, 57, 215–219.

    Article  Google Scholar 

  18. Labuda, I. M., Keon, K. A., & Goers, S. K. (1993). In P. Schreier & P. Winterhalter (Eds.), Microbial bioconversion process for the production of vanillin, progress in flavour precursor studies (pp. 477–482). Carol Stream: Allured.

    Google Scholar 

  19. Sutherland, J. B., Crawford, D. L., & Pometto, A. L., III. (1983). Canadian Journal of Microbiology, 29, 1253–1257.

    Article  CAS  Google Scholar 

  20. Mabinya, L. V., Mafunga, T., & Brand, J. M. (2010). African Journal of Biotechnology, 9, 1955–1958.

    CAS  Google Scholar 

  21. Tsujiyama, S., & Ueno, M. (2008). Bioscience, Biotechnology, and Biochemistry, 72, 212–215.

    Article  CAS  Google Scholar 

  22. Gasson, M. J., Kitamura, Y., McLauchlan, W. R., Narbad, A., Parr, A. J., Parsons, E. L. H., et al. (1998). Journal of Biological Chemistry, 273, 4163–4170.

    Article  CAS  Google Scholar 

  23. De Wulf, O., Thonart, P., Gaignage, P., Marlier, M., Paris, A., & Paquot, M. (1986). Biotechnology and Bioengineering Symposium, 17, 605–616.

    Google Scholar 

  24. Overhage, J., Priefert, H., Rabenhorst, H., & Steinbuchel, A. (1999). Applied Microbiology and Biotechnology, 52, 820–828.

    Article  CAS  Google Scholar 

  25. Gupta, J. K., Hamp, S. G., Buswell, J. A., & Eriksson, K. E. (1981). Archives of Microbiology, 128, 349–354.

    Article  Google Scholar 

  26. Falconnier, B., Lapierre, C., Lesage-Messen, L., Yonnet, G., Brunerie, P., Colonna-Ceccaldi, B., et al. (1994). Journal of Biotechnology, 37, 123–132.

    Article  CAS  Google Scholar 

  27. Krings, U., Pilawa, S., Theobald, C., & Berger, R. G. (2001). Journal of Biotechnology, 85, 305–314.

    Article  CAS  Google Scholar 

  28. Ander, P., Hatakka, A., & Eriksson, K. E. (1980). Archives of Microbiology, 125, 189–202.

    Article  CAS  Google Scholar 

  29. Shimizu, M., Kobayashi, Y., Tanaka, H., & Wariishi, H. (2005). Applied Microbiology and Biotechnology, 68, 673–679.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support of this work to the Xunta de Galicia (project 09TAL13383PR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Domínguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Max, B., Carballo, J., Cortés, S. et al. Decarboxylation of Ferulic Acid to 4-Vinyl Guaiacol by Streptomyces setonii . Appl Biochem Biotechnol 166, 289–299 (2012). https://doi.org/10.1007/s12010-011-9424-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9424-7

Keywords

Navigation