Skip to main content

Advertisement

Log in

Chemiluminescent Detection of Carbohydrates in the Tumoral Breast Diseases

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Nowadays, there is an increase of investigations into the fibroadenoma, mainly because some studies have shown that the occurrence of fibroadenoma is linked to an increased risk of developing breast carcinoma. Currently, the chemiluminescence biomarkers are applied for validation methods and screening. Here, a lectin chemiluminescence is proposed as new histochemistry method to identify carbohydrates in mammary tumoral tissues. The lectins concanavalin A (Con A) and peanut agglutinin (PNA) conjugated to acridinium ester were used to characterize the glycocode of breast tissues: normal, fibroadenoma, and invasive duct carcinoma (IDC). The lectin chemiluminescence expressed in relative light units (RLU) was higher in fibroadenoma and IDC than in normal tissue for both lectins tested. The relationship RLU emission versus tissue area described a linear and hyperbolic curve for IDC and fibroadenoma, respectively, using Con A whereas hyperbolic curves for both transformed tissues using PNA. RLU was abolished by inhibiting the interaction between tissues and lectins using their specific carbohydrates: methyl-α-d-mannoside (Con A) and galactose (PNA). The intrinsic fluorescence emission did not change with combination of the lectins (Con A/PNA) to the acridinium ester for hydrophobic residues. These results represent the lectin chemiluminescence as an alternative of histochemistry method for tumoral diagnosis in the breast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bateman, A. C. (2007). Surgery (Oxford), 25(6), 245–250.

    Article  Google Scholar 

  2. Chow, L. W. C. (2011). The Breast, 20(1), S24.

    Article  Google Scholar 

  3. Veiga, R. K. A., Melo-Júnior, M. R., Araújo-Filho, J. L. S., Lins, C. A. B., & Teles, N. (2009). Journal Brasileiro de Patologia e Medicina Laboratorial, 45(2), 131–137.

    CAS  Google Scholar 

  4. Araújo-Filho, J. L. S., Melo-Júnior, M. R., & Carvalho, L. B., Jr. (2011). International Journal of Pharma and Bio Sciences, 2, B-392–B-400.

    Google Scholar 

  5. Baeyens, W. R., Schulman, S. G., Calokerinos, A. C., Zhao, Y., Garcia Campana, A. M., Nakashima, K., et al. (1998). Journal of Pharmaceutical and Biomedical Analysis, 17, 941–953.

    Article  CAS  Google Scholar 

  6. Campbell, A. K., Hallett, M. B., & Weeks, I. (1985). Methods of Biochemical Analysis, 31, 317–416.

    Article  CAS  Google Scholar 

  7. Arnold, L. J., Jr., Hammond, P. W., Wiese, W. A., & Nelson, N. C. (1989). Clinical Chemistry, 35, 1588–1594.

    CAS  Google Scholar 

  8. Kricka, L. J. (2003). Analytica Chimica Acta, 500, 279–286.

    Article  CAS  Google Scholar 

  9. Campos, L. M., Cavalcanti, C. L. B., Lima-Filho, J. L., Carvalho, L. B., Jr., & Beltrao, E. I. C. (2006). Biomarkers, 11, 480–484.

    Article  CAS  Google Scholar 

  10. Liu, B., Bian, H. J., & Bao, J. K. (2010). Cancer Letters, 287, 1–12.

    Article  CAS  Google Scholar 

  11. Ravishankar, R., Thomas, C. J., Suguna, K., Surolia, A., & Vijayan, M. (2001). Proteins, 43, 260–270.

    Article  CAS  Google Scholar 

  12. Weeks, I., Sturgess, M., Brown, R. C., & Woodhead, J. S. (1986). Methods in Enzymology, 133, 366–387.

    Article  CAS  Google Scholar 

  13. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  14. Beltrao, E. I. C., Correia, M. T. S., Figueredo-Silva, J., & Coelho, L. C. B. B. (1998). Applied Biochemistry and Biotechnology, 74, 125–134.

    Article  CAS  Google Scholar 

  15. Abe, H., Hanasawa, K., Endo, H. N. Y., Tani, T., & Kushima, R. (2004). International Journal of Clinical Oncology, 9, 334–338.

    Article  Google Scholar 

  16. Rakha, E. A., El-Sayed, M. E., Reis-Filho, J. S., & Ellis, I. O. (2008). Histopathology, 52, 67–81.

    Article  CAS  Google Scholar 

  17. Pusztai, L. (2008). The Oncologist, 13, 350–360.

    Article  CAS  Google Scholar 

  18. Von, M. G., Sinn, H. P., Raab, G., Loibl, S., Blohmer, J. U., Eidtmann, H., et al. (2008). Breast Cancer Research, 10, R30.

    Article  Google Scholar 

  19. Oppenheimer, S. B., Alvarez, M., & Nnoli, J. (2008). Acta Histochemica, 110, 6–13.

    Article  CAS  Google Scholar 

  20. Dai, Z., Zhou, J., Qiu, S. J., Liu, Y. K., & Fan, J. (2009). Electrophoresis, 30, 2957–2966.

    Article  CAS  Google Scholar 

  21. Kannagi, R., Izawa, M., Koike, T., Miyazaki, K., & Kimura, N. (2004). Cancer Science, 95, 377–384.

    Article  CAS  Google Scholar 

  22. Beltrao, E. I. C., Medeiros, P. L., Rodrigues, O. G., Figueredo-Silva, J., Valenca, M. M., Coelho, L. C. B. B., et al. (2003). European Journal of Histochemistry, 47, 139–142.

    CAS  Google Scholar 

  23. Sobral, A. P., Rego, M. J., Cavalacanti, C. L. B., Carvalho, L. B., Jr., & Beltrao, E. I. C. (2010). Journal of Oral Science, 52, 49–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank to CNPq and FACEPE for financial support as well as to Ian P. G. Amaral for the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Passos Brustein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brustein, V.P., Cavalcanti, C.L.B., de Melo-Junior, M.R. et al. Chemiluminescent Detection of Carbohydrates in the Tumoral Breast Diseases. Appl Biochem Biotechnol 166, 268–275 (2012). https://doi.org/10.1007/s12010-011-9422-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9422-9

Keywords

Navigation