Skip to main content
Log in

A Simple Colorimetric Enzymatic-Assay for Okadaic Acid Detection Based on the Immobilization of Protein Phosphatase 2A in Sol-Gel

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Okadaic acid (OA), a lipophilic toxin, is produced by Dinophysis and Prorocentrum, and causes diarrheic shellfish poisoning to humans. The mechanism of OA action is based on the reversible inhibition of protein phosphatase type 2A (PP2A) by the toxin. Therefore, this inhibition could be used to develop assay for OA detection. In this work, a colorimetric test based on the PP2A inhibition was developed for OA detection. PP2A from GTP and Millipore was immobilized on silica sol-gel, and the detection was performed. A limit of detection of 0.29 and 1.14 μg/L was respectively observed for enzyme from GTP and Millipore. The immobilization technique provided a tool to preserve the enzymatic activity, which is very unstable in solution. The PP2A immobilized sol-gel exhibited a storage stability of near 5 months, when microtiter plate with enzyme-immobilized polymer was kept at −18C°. The combination of the simplicity of the colorimetric method, along with long storage stability achieved by sol-gel immobilization, demonstrated the potentiality of this technique to be used for commercial purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Steidinger, K. A. (1993). Algal toxins in seafood and drinking water. New York: Academic Press.

    Google Scholar 

  2. Yasumoto, T., & Murata, M. (1993). Marine toxins. Chemical Reviews, 93, 1897–1909.

    Article  CAS  Google Scholar 

  3. Suganuma, M., Fujuki, H., Suguri, H., Yoshizawa, S., Hirota, M., Nakayasu, M., et al. (1988). Okadaic acid: an additional non-phorbol-12-tetradecanoate-13-acetate-type tumor promoter. Proceedings of the National Academy of Sciences of the United States of America, 85(6), 1768–1773.

    Article  CAS  Google Scholar 

  4. EFSA. (2008). Marine biotoxins in shellfish – okadaic acid and analogues Scientific Opinion of the Panel on Contaminants in the Food chain. The EFSA Journal, 589, 1–62.

    Google Scholar 

  5. Yasumoto, T., Oshima, Y., & Yamaguchi, M. (1978). Occurance of a new type of shellfish poisioning in the Tohuko district. Bulletin of the Japanese Society of the Science of Fish, 44, 1249–1255.

    Article  Google Scholar 

  6. Kreuzer, M. P., O'Sullivan, C. K., & Guilbault, G. G. (1999). Alkaline phosphatase as a label for immunoassay using amperometric detection with a variety of substrates and an optimal buffer system. Analytica Chimica Acta, 393, 95–102.

    Article  CAS  Google Scholar 

  7. Bialojan, C., & Takai, A. (1988). Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochemical Journal, 256, 283–290.

    CAS  Google Scholar 

  8. Takai, A., Ohno, Y., Yasumoto, T., & Mieskes, G. (1992). Estimation of the rate constants associated with the inhibitory effect of okadaic acid on type 2A protein phosphatase by time-course analysis. Biochemical Journal, 287, 101–106.

    CAS  Google Scholar 

  9. Campas, M., & Marty, J.-L. (2007). Enzyme sensors for the electrochemical detection of the marine toxin okadaic acid. Analytica Chimica Acta, 605, 87–93.

    Article  CAS  Google Scholar 

  10. Canete, E., Campas, M., De Le Iglesia, P., & Diogene, J. (2010). NG108-15 cell-based and protein phosphatase inhibition assays as alternative semiquantitative tools for the screening of lipophilic toxins in mussels.okadaic acid detection. Toxicology in Vitro, 24, 611–619.

    Article  CAS  Google Scholar 

  11. Ikehara, T., Imamura, S., Yoshino, A., & Yasumoto, T. (2010). PP2A inhibition assay using recombinant enzyme for rapid detection of okadaic acid and its analogs in shellfish. Toxins, 2, 195–204.

    Article  CAS  Google Scholar 

  12. Simon, J. F., & Vernoux, J.-P. (1994). Highly sensitive assay of okadaic acid using protein phosphatase and paranitrophenyl phosphate. Natural Toxins, 2, 293–301.

    Article  CAS  Google Scholar 

  13. Tubaro, A., Florio, C., Luxich, E., Sosa, S., Loggia, R. D., & Yasumoto, T. (1996). A protein phosphatase 2A inhibition assay for a fast and sensitive assessment of okadaic acid contamination in mussels. Toxicon, 34, 743–752.

    Article  CAS  Google Scholar 

  14. Fágain, C. O. (2003). Enzyme stabilization—recent experimental progress. Enzyme and Microbial Technology, 33, 137–149.

    Article  Google Scholar 

  15. Kim, J., Grate, J. W., & Wang, P. (2006). Nanostructures for enzyme stabilization. Chemical Engineering Science, 61, 1017–1026.

    Article  CAS  Google Scholar 

  16. Roger, A. S. (2007). Enzyme immobilization: the quest for optimum performance. Advanced Synthesis and Catalysis, 349, 1289–1307.

    Article  Google Scholar 

  17. Hart, J. P., & Wring, S. A. (1997). Recent developments in the design and application of screen-printed electrochemical sensors for biomedical, environmental and industrial analyses. Trends in Analytical Chemistry, 16, 89–103.

    Article  CAS  Google Scholar 

  18. Li, Y.-G., Zhou, Y.-X., Jiang, J.-H., & Ma, L.-R. (1999). Immobilization of enzyme on screen-printed electrode by exposure to glutaraldehyde vapour for the construction of amperometric acetylcholinesterase electrodes. Analytica Chimica Acta, 382, 277–282.

    Article  CAS  Google Scholar 

  19. Rouillon, R., Mionetto, N., & Marty, J.-L. (1992). Acetylcholine biosensor involving entrapment of two enzymes. Optimization of operational and storage conditions. Analytica Chimica Acta, 268, 347–350.

    Article  CAS  Google Scholar 

  20. Noguer, T., Leca, B., Jeanty, G., & Marty, J.-L. (1999). Biosensors based on enzyme inhibition: Detection of organophosphorus and carbamate insecticides and dithiocarbamate fungicides. Field Analytical Chemistry & Technology, 3, 171–178.

    Article  CAS  Google Scholar 

  21. Noguer, T., Balasoiu, A. M., Avramescu, A., & Marty, J.-L. (2001). Development of a disposable biosensor for the detection of metam-sodium and its metabolite mitc. Analytical Letters, 34, 513–528.

    Article  CAS  Google Scholar 

  22. Brinker, C. J., & Sheerer, G. W. (1990). Sol-gel science. The physics and chemistry of sol-gel processing. San Diego: Academic Press.

    Google Scholar 

  23. Andreescu, S., Barthelmebs, L., & Marty, J.-L. (2002). Immobilization of acetylcholinesterase on screen-printed electrodes: comparative study between three immobilization methods and applications to the detection of organophosphorus insecticides. Analytica Chimica Acta, 464, 171–180.

    Article  CAS  Google Scholar 

  24. Campas, M., Szydlowska, D., Trojanowicz, M., & Marty, J.-L. (2005). Towards the protein phosphatase–based biosensor for microcystin detection. Biosensors and Bioelectronics, 20, 1520–1530.

    Article  CAS  Google Scholar 

  25. Li, F.-Y., Xing, Y.-J., & Ding, X. (2007). Immobilization of papain on cotton fabric by sol-gel method. Enzyme and Microbial Technology, 40, 1692–1697.

    Article  CAS  Google Scholar 

  26. Desimone, M. F., De Marzi, M. C., Copello, G. J., Fernández, M. M., Pieckenstain, F. L., & Malchiodi, E. L. (2006). Production of recombinant proteins by sol-gel immobilized Escherichia coli. Enzyme and Microbial Technology, 40, 168–171.

    Article  CAS  Google Scholar 

  27. Alvarez, G. S., Desimone, M. F., & Diaz, L. E. (2007). Immobilization of bacteria in silica matrices using citric acid in the sol-gel process. Applied Microbiolology and Biotechnology, 73, 1059–1064.

    Article  CAS  Google Scholar 

  28. Bradbury, S.-L., & Jakoby, W.-B. (1972). Glycerol as an enzyme-stabilizing agent: Effects on aldehyde dehydrogenase. Proceedings of the National Academy of Science of the United States of America, 69, 2373–2376.

    Article  CAS  Google Scholar 

  29. Nita, M., Raducan, A., Puiu, M., & Oancea, D. (2007). Stabilization of catalase in the presence of additives. Bucharest: ARS.

    Google Scholar 

  30. Eixarch, H., Garibo, D., Canete, E., De La Iglesia, P., Fernandez, M., Diogene, J., et al. (2010). Protein phosphatase and cell-based assays as toxicosurveillance tools: Matrix effects in the analysis of marine toxins present in shellfish. Toxicological Letters, 196, 334.

    Article  Google Scholar 

Download references

Acknowledgement

Akhtar Hayat is very grateful to the Higher Education Commission of Pakistan for financial support. This study was carried out as the part of the research project ALARMTOX, INTERREG SUDOE IVB and FEDER through the SOE1/P1/E129.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lise Barthelmebs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayat, A., Barthelmebs, L. & Marty, JL. A Simple Colorimetric Enzymatic-Assay for Okadaic Acid Detection Based on the Immobilization of Protein Phosphatase 2A in Sol-Gel. Appl Biochem Biotechnol 166, 47–56 (2012). https://doi.org/10.1007/s12010-011-9402-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9402-0

Keywords

Navigation