Skip to main content
Log in

Batch Biodegradation of Para-Nitrophenol Using Arthrobacter chlorophenolicus A6

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present study reports the kinetics of p-nitrophenol (PNP) biodegradation by Arthrobacter chlorophenolicus A6 in batch shake flasks for initial PNP concentrations in the range of 25–225 mg l−1. Results of batch growth kinetics of A. chlorophenolicus A6 at various initial PNP concentrations revealed that the culture followed substrate inhibition kinetics with estimated decay coefficient value of 0.0132 h−1. Biokinetic constants involved in the process were estimated by fitting the experimental data to several substrate inhibition kinetics models available from the literature. Among the models tested, Webb model fitted the experimental data best with the least root mean square error value, and the estimated model constants values were μ = 0.161 h−1, K i = 128 mg l−1, K s = 60.15 mg l−1, and K = 100 mg l−1. In addition, observed and theoretical yield coefficients, maintenance energy, and specific growth rate of the culture at various initial PNP concentrations were also investigated in the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Uberoi, V., & Bhattacharya, S. K. (1997). Toxicity and degradability of nitrophenols in anaerobic systems. Water Environment Research, 69, 146–154.

    Article  CAS  Google Scholar 

  2. Haghighi-Podeh, M. R., Bhattacharya, S. K., & Mingbo, Q. (1995). Effects of nitrophenols on acetate utilizing methanogenic systems. Water Research, 29, 391–399.

    Article  Google Scholar 

  3. Environmental Protection Agency. (1988). Effluent guidelines and standards, organic chemicals, plastics, and synthetic fibers. 40 CFR part 414, Washington, DC.

  4. Dolon, B. A., Razo-Flares, E., Lettiga, G., & Field, J. A. (1996). Continous detoxification, trans-formation and degradation of nitrophenol in upflow anerobic sludge blacket (UASB) reactors. Biotechnology and Bioengineering, 51, 439–449.

    Article  Google Scholar 

  5. Tomei, M. C., Annesini, M. C., Lubertia, R., Cento, G., & Senia, A. (2003). Kinetics of 4-nitrophenol biodegradation in a sequencing batch reactor. Water Research, 37, 3803–3814.

    Article  CAS  Google Scholar 

  6. Environmental Protection Agency. (1980). Ambient water quality for nitrophenols. 440/5 80-063 Washington, DC.

  7. Trapido, M., & Kallas, J. (2000). Advanced oxidation processes for the degradation and the detoxification of 4-nitrophenol. Environmental Technology, 21, 799–808.

    Article  CAS  Google Scholar 

  8. Chen, D., & Ray, A. K. (1998). Photodegradation kinetics of 4-nitrophenol in TiO2, suspension. Water Research, 32, 3223–3234.

    Article  CAS  Google Scholar 

  9. Wei, Q., Liu, H., Zhang, J. J., Wang, S. H., Xiao, Y., & Zhou, N. Y. (2010). Characterization of a para-nitrophenol catabolic cluster in Pseudomonas sp. strain NyZ402 and construction of an engineered strain capable of simultaneously mineralizing both para- and ortho-nitrophenols. Biodegradation. doi:10.1007/s10532-009-9325-4.

  10. Bhushan, B., Chauhan, A., Samanta, S. K., & Jain, R. K. (2000). Kinetics of biodegradation of p-nitrophenol by different bacteria. Biochemical and Biophysical Research Communications, 274, 626–630.

    Article  CAS  Google Scholar 

  11. Zaidi, B. R., & Mehta, N. K. (1995). Effects of organic compounds on the degradation of p-nitrophenol in lake and industrial wastewater by inoculated bacteria. Biodegradation, 6, 275–281.

    Article  CAS  Google Scholar 

  12. Lima, S. A. C., Castro, P. M. L., & Morais, R. (2003). Biodegradation of p-nitrophenol by microalgae. Journal of Applied Phycology, 15, 137–142.

    Article  CAS  Google Scholar 

  13. Westerberg, K., Elvang, A. M., Stackebrandtm, E., & Jansson, J. K. (2000). Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol. International Journal of Systematic and Evolutionary Microbiology, 50, 2083–2092.

    Article  CAS  Google Scholar 

  14. Sahoo, N. K., Pakshirajan, K., & Ghosh, P. K. (2010). Enhancing the biodegradation of 4-chlorophenol by Arthrobacter chlorophenolicus A6 via medium development. International Biodeterioration and Biodegradation, 64, 474–480.

    Article  CAS  Google Scholar 

  15. Hao, O. J., Kim, M. H., Seagren, E. A., & Kim, H. (2002). Kinetics of phenol and chlorophenol utilization by Acinetobacterspecies. Chemosphere, 46, 797–807.

    Article  CAS  Google Scholar 

  16. Cho, Y. G., Rhee, S. K., & Lee, S. T. (2000). Influence of phenol on biodegradation of p-nitrophenol by freely suspended and immobilized Nocardioides sp. NSP41. Biodegradation, 11, 21–28.

    Article  CAS  Google Scholar 

  17. Kumar, A., & Kumar, S. (2005). Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochemical Engineering Journal, 22, 151–159.

    Article  CAS  Google Scholar 

  18. Kappeler, J., & Gujer, W. (1992). Estimation of kinetic parameters of heterotrophic biomass under aerobic conditions and characterization of wastewater for activated sludge modelling. Water Science and Technology, 25, 125–139.

    CAS  Google Scholar 

  19. Henze, M., Harremoës, P., Jansen, J., & Arvin, E. (2002). Waste water treatment. Biological and chemical processes. Berlin: Springer.

    Google Scholar 

  20. Kovari, K. K., & Elgim, T. (1998). Growth kinetics of suspended microbial cells: from single substrate controlled growth to mixed substrate kinetics. Microbiology and Molecular Biology Reviews, 62, 646–666.

    Google Scholar 

  21. Yan, J., Jianping, W., Jing, B., Daoquan, W., & Zongding, H. (2006). Phenol biodegradation by the yeast Candida tropicalis in the presence of m-cresol. Biochemical Engineering Journal, 29, 227–234.

    Article  CAS  Google Scholar 

  22. Bai, J., Wen, J. P., Li, H. M., & Jiang, Y. (2007). Kinetic modeling of growth and biodegradation of phenol and m-cresol using Alcaligenes faecalis. Process Biochemistry, 42, 510–517.

    Article  CAS  Google Scholar 

  23. Edwards, V. H. (1970). The influence of high substrate concentrations on microbial kinetics. Biotechnology and Bioengineering, 12, 679–712.

    Article  CAS  Google Scholar 

  24. Aiba, S., Shoda, M., & Nagalani, M. (1968). Kinetics of product inhibition in alcohol fermentation. Biotechnology and Bioengineering, 10, 845–864.

    Article  CAS  Google Scholar 

  25. Yano, T., Nakahara, T., Kamiyama, S., & Yamada, K. (1996). Kinetic studies on microbial activities in concentrated solutions and effect of excess sugars on oxygen uptake rate of a cell-free respiratory system. Agricultural and Biological Chemistry, 30, 42–48.

    Article  Google Scholar 

  26. Andrews, J. F. (1968). A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnology and Bioengineering, 10, 707–723.

    Article  CAS  Google Scholar 

  27. Haldane, J. B. S. (1965). Enzymes (p. 84). Cambridge: MIT.

    Google Scholar 

  28. Webb, J. L. (1963). Enzyme and metabolic inhibitors. Boston: Academic.

    Google Scholar 

  29. Wang, S. J., & Loh, K. C. (1999). Modeling the role of metabolic intermediates in kinetics of phenol biodegradation. Enzyme and Microbiol Technology, 25, 177–184.

    Article  Google Scholar 

  30. Salehi, Z., Sohrabi, M., Vahabzadeh, F., Fatemi, S., & Kawase, Y. (2010). Modeling of p-nitrophenol biodegradation by Ralstonia eutropha via application of the substrate inhibition concept. Journal of Hazardous Materials, 177, 582–585.

    Article  CAS  Google Scholar 

  31. Goswami, M., Shivaraman, N., & Singh, R. P. (2002). Kinetics of chlorophenol degradation by benzoate-induced culture of Rhodococcus erythropolis M1. World Journal of Microbiology and Biotechnology, 18, 779–783.

    Article  CAS  Google Scholar 

  32. Juang, R., & Tsai, S. (2006). Growth kinetics of Pseudomonas putida in the biodegradation of single and mixed phenol and sodium salicylate. Biochemical Engineering Journal, 31, 133–140.

    Article  CAS  Google Scholar 

  33. Tomei, M. C., & Annesini, M. C. (2008). Biodegradation of phenolic mixtures in a sequencing batch reactor a kinetic study. Environmental Science and Pollution Research, 15, 188–195.

    Article  CAS  Google Scholar 

  34. Kumaran, P., & Paruchuri, Y. L. (1997). Kinetics of phenol biotransformation. Water Research, 31, 11–22.

    Article  CAS  Google Scholar 

  35. Bhatti, Z. I., Toda, H., & Furukawa, K. (2002). p-Nitrophenol degradation by activatedsludge attached on nonwovens. Water Research, 36, 1135–1142.

    Article  CAS  Google Scholar 

  36. Ray, P., Oubelli, A. M., & Loser, C. (1999). Aerobic 4-nitrophenol degradation by microorganisms fixed in a continuously working aerated solid-bed reactor. Applied Microbiology and Biotechnology, 51, 284–290.

    Article  CAS  Google Scholar 

  37. Golovleva, L. A., Zaborina, O., Pertsova, R., Baskunov, B., Schurukhin, Y., & Kuzmin, S. (1992). Degradation of polychlorinated phenols by Streptomyces rochei 303. Biodegradation, 2, 201–208.

    Article  CAS  Google Scholar 

  38. Chen, F., & Johns, M. R. (1996). Relationship between substrate inhibition and maintenance energy of Chlamydomonas reinhardtii in heterotrophic culture. Journal of Applied Phycology, 8, 15–19.

    Article  Google Scholar 

  39. Onysko, K. A., Budman, H. M., & Robinson, C. W. (2000). Effect of temperature on the inhibition kinetics of phenol biodegradation by Pseudomonas putida Q5. Biotechnology and Bioengineering, 70, 291–299.

    Article  CAS  Google Scholar 

  40. Shuler, M. L., & Kargi, F. (1992). Bioprocess engineering (pp. 154–61). New Jersey: Prentice- Hall.

    Google Scholar 

  41. Rangaswami, G., & Bagyaraj, D. J. (2001). Agricultural microbiology (Secondth ed., p. 112). New Delhi: Prentice-Hall of India, Private Ltd.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannan Pakshirajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahoo, N.K., Pakshirajan, K. & Ghosh, P.K. Batch Biodegradation of Para-Nitrophenol Using Arthrobacter chlorophenolicus A6. Appl Biochem Biotechnol 165, 1587–1596 (2011). https://doi.org/10.1007/s12010-011-9379-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9379-8

Keywords

Navigation