Skip to main content
Log in

Large-Scale Production of Phospholipase D from Streptomyces racemochromogenes and Its Application to Soybean Lecithin Modification

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Phospholipase D (PLD) catalyzes transphosphatidylation, causing inter-conversion of the polar head group of phospholipids and phospholipid hydrolysis. Previously, we cloned PLD103, a PLD with high transphosphatidylation activity, from Streptomyces racemochromogenes strain 10-3. Here, we report the construction of an expression system for the PLD103 gene using Streptomyces lividans as the host bacterium to achieve large-scale production. The phosphatidylcholine (PC) hydrolysis activity of S. lividans transformed with the expression plasmid containing the PLD103 gene was approximately 90-fold higher than that of the original strain. The recombinant PLD103 (rPLD103) found in the supernatant of the transformant culture medium was close to homogeneous. The rPLD103 was indistinguishable from the native enzyme in molecular mass and enzymatic properties. Additionally, rPLD103 had high transphosphatidylation activity on PC as a substrate in a simple aqueous one-phase reaction system and was able to modify the phospholipid content of soybean lecithin. Consequently, the expression system produces a stable supply of PLD, which can then be used in the production of phosphatidyl derivatives from lecithin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Doig, S. D., & Diks, R. M. M. (2003). Toolbox for modification of the lecithin headgroup. European Journal of Lipid Science and Technology, 105, 368–376.

    Article  CAS  Google Scholar 

  2. Ishii, F., & Nii, T. (2005). Properties of various phospholipid mixtures as emulsifiers or dispersing agents in nanoparticle drug carrier preparations. Colloids and Surfaces B: Biointerfaces, 41, 257–262.

    Article  CAS  Google Scholar 

  3. Miura, S., Tanaka, M., Suzuki, A., & Sato, K. (2004). Application of phospholipids extracted from bovine milk to the reconstitution of cream using butter oil. Journal of the American Oil Chemists’ Society, 81, 97–100.

    Article  CAS  Google Scholar 

  4. Nii, T., & Ishii, F. (2004). Properties of various phosphatidylcholines as emulsifiers or dispersing agents in microparticle preparations for drug carriers. Colloids and Surfaces B: Biointerfaces, 39, 57–63.

    Article  CAS  Google Scholar 

  5. Lee, Y., & Choe, E. (2008). Singlet oxygen quenching effects of phosphatidylcholine in emulsion containing sunflower oil. Journal of Food Science, 73, 506–511.

    Article  Google Scholar 

  6. Losso, J. N., Khachatryan, A., Ogawa, M., Godber, J. S., & Shih, F. (2005). Random centroid optimization of phosphatidylglycerol stabilized lutein-enriched oil-in-water emulsions at acidic pH. Food Chemistry, 92, 737–744.

    Article  CAS  Google Scholar 

  7. Shaban, H., Borrás, C., Viña, J., & Richter, C. (2002). Phosphatidylglycerol potently protects human retinal pigment epithelial cells against apoptosis induced by A2E, a compound suspected to cause age-related macula degeneration. Experimental Eye Research, 75, 99–108.

    Article  CAS  Google Scholar 

  8. Suzuki, S., Yamatoya, H., Sakai, M., Kataoka, A., Furushiro, M., & Kudo, S. (2001). Oral administration of soybean lecithin transphosphatidylated phosphatidylserine improves memory impairment in aged rats. The Journal of Nutrition, 131, 2951–2956.

    CAS  Google Scholar 

  9. Starks, M. A., Starks, S. L., Kingsley, M., Purpura, M., & Jäger, R. (2008). The effects of phosphatidylserine on endocrine response to moderate intensity exercise. Journal of the International Society of Sports Nutrition, 5, 11.

    Article  Google Scholar 

  10. Jäger, R., Purpura, M., & Kingsley, M. (2007). Phospholipids and sports performance. Journal of the International Society of Sports Nutrition, 4, 5.

    Article  Google Scholar 

  11. Jäger, R., Purpura, M., Geiss, K.-R., Weiß, M., Baumeister, J., Amatulli, F., et al. (2007). The effect of phosphatidylserine on golf performance. Journal of the International Society of Sports Nutrition, 4, 23.

    Article  Google Scholar 

  12. Yang, S. F., Freer, S., & Benson, A. A. (1967). Transphosphatidylation by phospholipase D. The Journal of Biological Chemistry, 242, 477–484.

    CAS  Google Scholar 

  13. Juneja, L. R., Kazuoka, T., Goto, N., Yamane, T., & Shimizu, S. (1989). Conversion of phosphatidylserine by various phospholipase D in the presence of L- or D-serine. Biochimica et Biophysica Acta, 1003, 277–283.

    CAS  Google Scholar 

  14. Nakazawa, Y., Uchino, M., Sagane, Y., Sato, H., & Takano, K. (2009). Isolation and characterization of actinomycetes strains that produce phospholipase D having high transphosphatidylation activity. Microbiological Research, 164, 43–48.

    Article  CAS  Google Scholar 

  15. Nakazawa, Y., Suzuki, R., Uchino, M., Sagane, Y., Kudo, T., Nagai, T., et al. (2010). Identification of actinomycetes producing phospholipase D with high transphosphatidylation activity. Current Microbiology, 60, 365–372.

    Article  CAS  Google Scholar 

  16. Nakazawa, Y., Sagane, Y., Kikuchi, T., Uchino, M., Nagai, T., Sato, H., et al. (2010). Purification, characterization and cloning of phospholipase D from Streptomyces racemochromogenes strain 10–3. The Protein Journal, 29, 598–608.

    Article  CAS  Google Scholar 

  17. Yokoyama, K., Nio, N., & Kikuchi, Y. (2004). Properties and application of microbial transglutaminase. Applied Microbiology and Biotechnology, 64, 447–454.

    Article  CAS  Google Scholar 

  18. Bhosale, S. H., Rao, M. M., & Deshpande, V. V. (1996). Molecular and industrial aspect of glucose isomerase. Microbiological Reviews, 60, 280–300.

    CAS  Google Scholar 

  19. Liu, C., Guo, L., Yao, C., Zhang, R., & Li, Y. (2008). Expression and purification of human vascular-endothelial-growth-factor-receptor-2 tyrosine kinase in Streptomyces for inhibitor screening. Biotechnology and Applied Biochemistry, 50, 113–119.

    Article  CAS  Google Scholar 

  20. Valilin, C., Ayala, J., García-Rivera, D., Jones, J., Rodríguez, C., González, L., et al. (2009). Immune response to Streptomyces lividans in mice: a potential vaccine vehicle against TB. The Open Vaccine Journal, 2, 85–91.

    Article  Google Scholar 

  21. Hong, B., Wu, B., & Li, Y. (2003). Production of C-terminal amidated recombinant salmon calcitonin in Streptomyces lividans. Applied Biochemistry and Biotechnology, 110, 113–123.

    Article  CAS  Google Scholar 

  22. Katz, E., Thompson, C. J., & Hopwood, D. A. (1983). Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. Journal of General Microbiology, 129, 2703–2714.

    CAS  Google Scholar 

  23. Hopwood, D. A., Hintermann, G., Kieser, T., & Wright, H. M. (1984). Integrated DNA sequences in three streptomycetes form related autonomous plasmids after transfer to Streptomyces lividans. Plasmid, 11, 1–16.

    Article  CAS  Google Scholar 

  24. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F., & Hopwood, D. A. (2000). Introduction of DNA into Streptomyces, in practical Streptomyces genetics (pp. 229–252). Norwich: The John Innes Foundation.

    Google Scholar 

  25. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  26. Hirano, H., & Watanabe, T. (1990). Microsequencing of proteins electrotransferred onto immobilizing matrices from polyacrylamide gel electrophoresis: Application to an insoluble protein. Electrophoresis, 11, 573–580.

    Article  CAS  Google Scholar 

  27. Imamura, S., & Horiuti, Y. (1978). Enzymatic determination of phospholipase D activity with choline oxidase. Journal of Biochemistry, 83, 677–680.

    CAS  Google Scholar 

  28. Brigh, G. H., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.

    Article  Google Scholar 

  29. Ogino, C., Kanemasu, M., Hayashi, Y., Kondo, A., Shimura, N., Tokuyama, S., et al. (2004). Over-expression system for secretory phospholipase D by Streptomyces lividans. Applied Genetics and Molecular Biotechnology, 64, 823–828.

    CAS  Google Scholar 

  30. Carrea, G., D’Arrigo, P., Piergianni, V., Roncaglio, S., Secundo, F., & Servi, S. (1995). Purification and properties of two phospholipases D from Streptomyces sp. Biochimica et Biophysica Acta, 1255, 273–279.

    Google Scholar 

  31. Hatanaka, T., Negishi, T., Kubota-Akizawa, M., & Hagishita, T. (2002). Purification, characterization, cloning and sequencing of phospholipase D from Streptomyces septatus TH-2. Enzyme and Microbial Technology, 31, 233–241.

    Article  CAS  Google Scholar 

  32. Ogino, C., Negi, Y., Matsumiya, T., Nakaoka, K., Kondo, A., Kuroda, S., et al. (1999). Purification, characterization, and sequence determination of phospholipase D secreted by Streptoverticillium cinnamoneum. Journal of Biochemistry, 125, 263–269.

    CAS  Google Scholar 

  33. Shimbo, K., Iwasaki, Y., Yamane, T., & Ina, K. (1993). Purification and properties of phospholipase D from Streptomyces antibioticus. Bioscience Biotechnology and Biochemistry, 57, 1946–1948.

    Article  CAS  Google Scholar 

  34. Shuto, S., Ueda, S., Imamura, S., Fukukawa, K., Matsuda, A., & Ueda, T. (1987). A facile one-step synthesis of 5′-phosphatidylnucleosides by an enzymatic two-phase reaction. Tetrahedron Letters, 28, 199–202.

    Article  CAS  Google Scholar 

  35. Koga, T., & Terao, J. (1994). Antioxidant activity of a novel phosphatidyl derivative of vitamin E in lard and its model system. Journal of Agricultural and Food Chemistry, 42, 1291–1294.

    Article  CAS  Google Scholar 

  36. Nagao, A., Ishida, N., & Terao, J. (1991). Synthesis of 6-phosphatidyl-L-ascorbic acid by phospholipase D. Lipids, 26, 390–394.

    Article  CAS  Google Scholar 

  37. Kokusho, Y., Tsunoda, A., Kato, S., Machida, H., & Iwasaki, S. (1993). Production of various phosphatidylsaccharides by phospholipase D from Actinomadura sp. strain no. 362. Bioscience Biotechnology and Biochemistry, 57, 1302–1305.

    Article  CAS  Google Scholar 

  38. Takami, M., Hidaka, N., & Suzuki, Y. (1994). Phospholipase D-catalyzed synthesis of phosphatidyl aromatic compounds. Bioscience Biotechnology and Biochemistry, 58, 2140–2144.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kazuaki Hirabayashi, Teppei Kikuchi, and Eri Yamamoto for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yozo Nakazawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(JPEG 288 kb)

High resolution image (EPS 1794 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakazawa, Y., Sagane, Y., Sakurai, Si. et al. Large-Scale Production of Phospholipase D from Streptomyces racemochromogenes and Its Application to Soybean Lecithin Modification. Appl Biochem Biotechnol 165, 1494–1506 (2011). https://doi.org/10.1007/s12010-011-9370-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9370-4

Keywords

Navigation