Skip to main content
Log in

New Feruloyl Esterases to Access Phenolic Acids from Grass Biomass

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the Sorangium cellulosum strain So ce56 genome, two putative esterase-encoding genes (loci sce1896 and sce8927) were cloned, expressed in Escherichia coli, and the resulting enzymes (designated ScFAE1 and ScFAE2) were used to assess the possible release of ferulic acid (FA) from triticale and wheat brans, and an aqueous fraction of steam-exploded wheat straw. The two polypeptides, sharing only 30% sequence identity, exhibit a typical catalytic Ser-Asp-His triad, a characteristic of α/β-hydrolase fold proteins. Both ScFAE1 (35 kDa) and ScFAE2 (34 kDa) were purified to apparent homogeneity and comparison of their kinetic parameters indicated an apparent higher affinity of ScFAE2 than ScFAE1 towards the various feruloyl substrates. This property was reflected by the observation that ScFAE2 was capable of yielding up to 85% of FA from destarched triticale bran. In the steam-exploded wheat sample, more than 85% yield of FA or p-coumaric acid was also effected by ScFAE2 without the decomposition of valuable chemical such as furfural. The two cloned FAEs represent the first of myxobacterial origin to be characterized and they are classified as new members of the type D family of FAEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Black, M., & Miller, R. (2006). Journal of Chemical Technology and Biotechnology, 81, 1725–1728.

    Article  CAS  Google Scholar 

  2. Hermann, B. G., & Patel, M. (2007). Applied Biochemistry and Biotechnology, 136, 361–388.

    Article  CAS  Google Scholar 

  3. Bozell, J. J. (2008). Clean, 36, 641–647.

    CAS  Google Scholar 

  4. Yu, P., McKinnon, J. J., & Christensen, D. A. (2005). Journal of Animal Science, 83, 1133–1141.

    CAS  Google Scholar 

  5. Krueger, N. A., Adesogan, A. T., Staples, C. R., Krueger, W. K., Dean, D. B., & Littell, R. C. (2008). Animal Feed Science and Technology, 145, 95–108.

    Article  CAS  Google Scholar 

  6. Faulds, C. B. (2010). Phytochemistry Reviews, 9, 121–132.

    Article  CAS  Google Scholar 

  7. Vafiadi, C., Topakas, E., & Christakopoulos, P. (2006). Carbohydrate Research, 341, 1992–1997.

    Article  CAS  Google Scholar 

  8. Benoit, I., Navarro, D., Marnet, N., Rakotomanomana, N., Lesage-Messen, L., Sigoillota, J. C., et al. (2006). Carbohydrate Research, 341, 1820–1827.

    Article  CAS  Google Scholar 

  9. Wong, D. W. S. (2006). Applied Biochemistry and Biotechnology, 133, 87–112.

    Article  CAS  Google Scholar 

  10. Topakas, E., Vafiadi, C., & Christakopoulos, P. (2007). Process Biochemistry, 42, 497–509.

    Article  CAS  Google Scholar 

  11. Fazary, A. E., & Ju, Y. H. (2007). Acta Biochimica et Biophysica Sinica, 39, 811–828.

    Article  CAS  Google Scholar 

  12. Koseki, T., Fushinobu, S., Ardiansyah, Shirakawa, H., & Komai, M. (2009). Applied Microbiology and Biotechnology, 84, 803–810.

    Article  CAS  Google Scholar 

  13. Olivares-Hernández, R., Sunner, H., Frisvad, J. C., Olsson, L., Nielsen, J., Panagiotou, G., et al. (2010). PloS One, 5, e12781.

    Article  Google Scholar 

  14. Ishii, T. (1997). Plant Science, 127, 111–117.

    Article  CAS  Google Scholar 

  15. Carnachan, S. M., & Harris, P. J. (2000). Biochemistry and Systematic Ecology, 28, 865–879.

    Article  CAS  Google Scholar 

  16. Bunzel, M. (2010). Phytochemistry Reviews, 9, 47–64.

    Article  CAS  Google Scholar 

  17. Werpy, T., & Petersen, G. (2004). Top value added chemicals from biomass, Volume I: Results of screening for potential candidate from sugars and synthesis gas. http://www.nrel.gov/docs/fy04osti/35523.pdf

  18. Dodds, D. R., & Gross, R. A. (2007). Science, 318, 125–1251.

    Article  Google Scholar 

  19. Shin, H.-D., McClendon, S., Le, T., Taylor, F., & Chen, R. R. (2006). Biotechnology and Bioengineering, 95, 1108–1115.

    Article  CAS  Google Scholar 

  20. Graf, E. (1992). Free Radical Biology & Medicine, 13, 435–448.

    Article  CAS  Google Scholar 

  21. Kikuzaki, H., Hisamoto, M., Hirose, K., Akiyama, K., & Taniguchi, H. (2002). Journal of Agricutural Food Chemistry, 50, 2161–2168.

    Article  CAS  Google Scholar 

  22. Ou, S., & Kwok, K. C. (2004). Journal of the Science of Food and Agriculture, 84, 1261–1269.

    Article  CAS  Google Scholar 

  23. Srinivasan, M., Sudheer, A. R., & Menon, V. P. (2007). Journal of Clinical Biochemistry and Nutrition, 40, 92–100.

    Article  CAS  Google Scholar 

  24. Rosazza, J. P. N., Huang, Z., Dostal, L., Volm, T., & Rousseau, B. (1995). Journal of Industrial Microbiology & Biotechnology, 15, 457–471.

    CAS  Google Scholar 

  25. Mathew, S., & Abraham, T. E. (2004). Critical Reviews in Biotechnology, 24, 59–83.

    Article  CAS  Google Scholar 

  26. Mathew, S., & Abraham, T. E. (2006). Critical Reviews in Microbiology, 32, 115–125.

    Article  CAS  Google Scholar 

  27. Udatha, D. B. R. K. G., Kouskoumvekaki, I., Olsson, L., & Panagiotou, G. (2011). Biotechnology Advances, 29, 94–110.

    Article  CAS  Google Scholar 

  28. Aurilia, V., Parracino, A., & D’Auria, S. (2008). Gene, 410, 234–240.

    Article  CAS  Google Scholar 

  29. Rashamuse, K. J., Burton, S. G., & Cowan, D. A. (2007). Journal of Applied Microbiology, 103, 1610–1620.

    Article  CAS  Google Scholar 

  30. DeBoy, R. T., Mongodin, E. F., Fouts, D. E., Tailford, L. E., Khouri, H., Emerson, J. B., et al. (2008). Journal of Bacteriology, 190, 5455–5463.

    Article  CAS  Google Scholar 

  31. Ferreira, L. M., Wood, T. M., Williamson, G., Faulds, C., Hazlewood, G. P., Black, G. W., et al. (1993). Biochemical Journal, 294, 349–355.

    CAS  Google Scholar 

  32. Dalrymple, B. P., Swadling, Y., Cybinski, D. H., & Xue, G. P. (1996). FEMS Microbiology Letters, 143, 115–120.

    Article  Google Scholar 

  33. Dalrymple, B. P., & Swadling, Y. (1997). Microbiology, 143, 1203–1210.

    Article  CAS  Google Scholar 

  34. Blum, D. L., Kataeva, I. A., Li, X. L., & Ljungdahl, L. G. (2000). Journal of Bacteriology, 182, 1346–1351.

    Article  CAS  Google Scholar 

  35. Dodd, D., Kocherginskaya, S. A., Spies, M. A., Beery, K. E., Abbas, C. A., Mackie, R. I., et al. (2009). Journal of Bacteriology, 191, 3328–3338.

    Article  CAS  Google Scholar 

  36. Abokitse, K., Wu, M., Bergeron, H., Grosse, S., & Lau, P. C. K. (2010). Applied Microbiology and Biotechnology, 87, 195–203.

    Article  CAS  Google Scholar 

  37. Goldstone, D. C., Villas-Boas, S. G., Till, M., Kelly, W. J., Attwood, G. T., & Arcus, V. T. (2010). Proteins, 78, 1457–1469.

    CAS  Google Scholar 

  38. Schneiker, S., Perlove, O., Kaiser, O., Gerth, K., Alici, A., Altmeyer, M., et al. (2007). Nature Biotechnology, 25, 1281–1289.

    Article  CAS  Google Scholar 

  39. Bartolome, B., Faulds, C. B., Kroon, P. A., Waldron, K., Gilbert, H. J., Hazlewood, G., et al. (1997). Applied and Environmental Microbiology, 63, 208–212.

    CAS  Google Scholar 

  40. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  41. Goudenege, D., Avner, S., Lucchetti-Miganeh, C., & Barloy-Hubler, F. (2010). BMC Microbiology, 10, 88.

    Article  Google Scholar 

  42. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Nucleic Acids Research, 22, 4673–4680.

    Article  CAS  Google Scholar 

  43. Nicholas, K. B., Nicholas Jr., H. B., & Deerfield II, D. W. (1997). EMBNET NEWS, 4, 1–4.

    Google Scholar 

  44. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  45. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  46. Davis, B. J. (1964). Annals of the New York Academy of Sciences, 121, 404–427.

    Article  CAS  Google Scholar 

  47. Marcinka, K., Roehring, C., & Kluge, S. (1992). Biochem Physiol Pflanzen, 188, 187–193.

    CAS  Google Scholar 

  48. Waldron, K. W., & Selvendran, R. R. (1990). Physiologia Plantarum, 80, 568–575.

    Article  CAS  Google Scholar 

  49. Mukherjee, G., Singh, R. K., Mitra, A., & Sen, S. K. (2007). Bioresource Technology, 98, 211–213.

    Article  CAS  Google Scholar 

  50. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000). Nucleic Acids Research, 28, 235–242.

    Article  CAS  Google Scholar 

  51. Levisson, M., Sun, L., Hendriks, S., Swinkels, P., Akveld, T., Bultema, J. B., et al. (2009). Journal of Molecular Biology, 385, 949–962.

    Article  CAS  Google Scholar 

  52. Crepin, V. F., Faulds, C. B., & Connerton, I. F. (2004). Applied Microbiolology and Biotechnology, 63, 647–652.

    Article  CAS  Google Scholar 

  53. Benoit, I., Danchin, E. G. J., Bleichrodt, R. J., & de Vries, R. P. (2008). Biotechnology Letters, 30, 387–396.

    Article  CAS  Google Scholar 

  54. Panagiotou, G., Olavarria, R., & Olsson, L. (2007). Journal of Biotechnology, 130, 219–228.

    Article  CAS  Google Scholar 

  55. Faulds, C. B., Bartolomé, B., & Williamson, G. (1997). Industrial Crops and Products, 6, 367–374.

    Article  CAS  Google Scholar 

  56. Faulds, C. B., Mandalari, G., Lo Curto, R. B., Bisignano, G., Christakopoulos, P., & Waldron, K. W. (2006). Applied Microbiology and Biotechnology, 71, 622–629.

    Article  CAS  Google Scholar 

  57. Barberousse, H., Kamoun, A., Chaabouni, M., Giet, J.-M., Roiseux, O., Paquot, M., et al. (2009). & Blecker C. Journal of the Science of Food and Agriculture, 89, 1634–1641.

    Article  CAS  Google Scholar 

  58. Xiros, C., Moukouli, M., Topakas, E., & Christakopoulos, P. (2009). Bioresource Technology, 23, 5917–5921.

    Article  Google Scholar 

  59. de O. Buanafina, M. M. (2009). Molecular Plant, 2, 861–872.

    Article  Google Scholar 

  60. Ou, S. Y., Luo, Y. L., Huang, C. H., & Jackson, M. (2009). Innovative Food Science and Emerging Technologies, 10, 253–259.

    Article  CAS  Google Scholar 

  61. Di Gioia, D., Sciubba, L., Ruzzi, M., Setti, L., & Fava, F. (2009). Journal of Chemical Technology and Biotechnology, 84, 1441–1448.

    Article  Google Scholar 

  62. Hashimoto, K., Kaneko, S., & Yoshida, M. (2010). Bioscience. Biotechnology and Biochemistry, 74, 1722–1724.

    Article  CAS  Google Scholar 

  63. Knoshaug, E. P., Selig, M. J., Baker, J. O., Decker, S. R., Himmel, M. E., & Adney, W. S. (2008). Applied Biochemistry and Biotechnology, 146, 79–87.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funding through the Canadian Triticale Biorefinery Initiative (CTBI) of the Agricultural Bioproducts Innovation Program of Agriculture and Agri-Food Canada (AAFC) and the National Bioproducts Program of NRCC-AFCC-NRCan. We thank A. Corriveau and C. Beaulieu for their expert help in various analytical analyses. Stephen Allen of Bio Vision is thanked for providing the steam explosion aqueous sample and brief information about the process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. K. Lau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, M., Abokitse, K., Grosse, S. et al. New Feruloyl Esterases to Access Phenolic Acids from Grass Biomass. Appl Biochem Biotechnol 168, 129–143 (2012). https://doi.org/10.1007/s12010-011-9359-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9359-z

Keywords

Navigation