Skip to main content

Advertisement

Log in

Fermentative Hydrogen Production from Soybean Protein Processing Wastewater in an Anaerobic Baffled Reactor (ABR) Using Anaerobic Mixed Consortia

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fermentative H2 production from soybean protein processing wastewater (SPPW) was investigated in a four-compartment anaerobic baffled reactor (ABR) using anaerobic mixed cultures under continuous flow condition in the present study. After being inoculated with aerobic activated sludge and operated at the inoculants of 5.98 gVSS L−1, COD of 5000 mg L−1, HRT of 16 h and temperature of (35 ± 1) °C for 22 days, the ABR achieved stable ethanol-type fermentation. The specific hydrogen production rate of anaerobic activated sludge was 165 LH2 kg MLVSS−1 day−1, the substrate conversion rate was 600.83 LH2 kg COD−1and the COD removal efficiency was 44.73% at the stable operation status. The ABR system exhibited a better stability and higher hydrogen yields than continuous stirring tank reactor under the same operational condition. The experimental data documented the feasibility of substrate degradation along with molecular H2 generation utilizing SPPW as primary carbon source in the ABR system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zecca, A., & Chiari, L. (2010). Fossil-fuel constraints on global warming. Energ Policy, 38, 1–3.

    Article  CAS  Google Scholar 

  2. Schilling, M. A., & Esmundo, M. (2009). Technology S-curves in renewable energy alternatives: Analysis and implications for industry and government. Energ Policy, 37, 1767–1781.

    Article  Google Scholar 

  3. Shafiee, S., & Topal, E. (2009). When will fossil fuel reserves be diminished? Energ Policy, 37, 181–189.

    Article  Google Scholar 

  4. Akella, A. K., Saini, R. P., & Sharma, M. P. (2009). Social, economical and environmental impacts of renewable energy systems. Renew Energy, 34, 390–396.

    Article  Google Scholar 

  5. Manish, S., & Banerjee, R. (2008). Comparison of biohydrogen production processes. International Journal Hydrogen Energy, 33, 279–286.

    Article  CAS  Google Scholar 

  6. Luo, G., Xie, L., Zou, Z. H., Wang, W., & Zhou, Q. (2010). Evaluation of pretreatment methods on mixed inoculum for both batch and continuous thermophilic biohydrogen production from cassava stillage. Bioresource Technology, 101, 959–964.

    Article  CAS  Google Scholar 

  7. Bhaskar, V. Y., Mohan, V. S., & Sarma, P. N. (2008). Effect of substrate loading rate of chemical wastewater on fermentative biohydrogen production in biofilm configured sequencing batch reactor. Bioresource Technology, 99, 6941–6948.

    Article  Google Scholar 

  8. Mohan, V. S., Mohanakrishna, G., Goud, K. R., & Sarma, P. N. (2009). Acidogenic fermentation of vegetable based market waste to harness biohydrogen with simultaneous stabilization. Bioresource Technology, 100, 3061–3068.

    Article  CAS  Google Scholar 

  9. Ntaikou, I., Kourmentza, C., Koutrouli, E. C., Stamatelatou, K., Zampraka, A., Kornaaros, M., et al. (2009). Exploitation of olive oil mill wastewater for combined biohydrogen and biopolymers production. Bioresource Technology, 100, 3724–3730.

    Article  CAS  Google Scholar 

  10. Santos, A. B., Cervantes, F. J., & Van, L. J. B. (2007). Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresource Technology, 98, 2369–2385.

    Article  Google Scholar 

  11. Liu, X. L., Ren, N. Q., & Yuan, Y. X. (2009). Performance of a periodic anaerobic baffled reactor fed on chinese traditional medicine industrial wastewater. Bioresource Technology, 100, 104–110.

    Article  CAS  Google Scholar 

  12. Zhu, G.F., Li, J.Z., Wu, P., Jin, H.Z. and Wang, Z. The performance and phase separated characteristics of an anaerobic baffled reactor treating soybean protein processing wastewater. Bioresour. Technol. 99, 8027–8033

  13. Xiao, B.Y. and Liu, J.X. Biological hydrogen production from sterilized sewage sludge by anaerobic self-fermentation. J. Hazard Mater. 168, 163–167

  14. Franchi, E., Tosi, C., Scolla, G., Penna, G. D., Rodriguez, F., & Pedroni, P. M. (2004). Metabolically engineered Rhodobacter sphaeroides RV strains for improved biohydrogen photoproduction combined with disposal of food wastes. Marine Biotechnology, 6, 552–565.

    Article  CAS  Google Scholar 

  15. Tang, G. L., Huang, J., Sun, Z. J., Tang, Q. Q., Yan, C. H., & Liu, G. Q. (2008). Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: Influence of fermentation temperature and pH. Journal of Bioscience and Bioengineering, 106(1), 80–87.

    Article  CAS  Google Scholar 

  16. Tanisho, S., & Shiwata, Y. (1994). Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenes. International Journal Hydrogen Energy, 9, 807–812.

    Article  Google Scholar 

  17. Li, C., & Fang, H. H. P. (2007). Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Critical Reviews in Environmental Science and Technology, 37, 1–39.

    Article  Google Scholar 

  18. Matsumoto, M., & Nishimura, Y. (2007). Hydrogen production by fermentation using acetic acid and lactic acid. Journal of Bioscience and Bioengineering, 103(3), 236–241.

    Article  CAS  Google Scholar 

  19. APHA. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington: American Public Health Association.

    Google Scholar 

  20. Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99, 4044–4064.

    Article  CAS  Google Scholar 

  21. Hutnan, M., Mrafkova, L., Drtil, M., & Derco, J. (1999). Methanogenic and nonmethanogenic activity of granulated sludge in anaerobic baffled reactor. Chemical Papers, 53(6), 374–378.

    CAS  Google Scholar 

  22. Ren, N. Q., Qin, Z., & Li, J. Z. (2003). Comparison and analysis of hydrogen production capacity with different acidogenic fermentative microflora. China Journal Environment Science China, 24(1), 70–74.

    CAS  Google Scholar 

  23. Van Ginkel, S., & Logan, B. E. (2005). Increased biological hydrogen production with reduced organic loading. Water Research, 39, 3819–3826.

    Article  Google Scholar 

  24. Qin, Z., Ren, N. Q., Li, J. Z., & Yan, X. F. (2003). Superacid state of acidogenic phase and controlling strategy for recovery. Journal Harbin Institute of Technology, 35(9), 1105–1108.

    CAS  Google Scholar 

  25. Ren, N. Q., Chen, X. L., & Zhao, D. (2001). Control of fermentation types in continuous flow acidogenic reactors: effects of pH and redox potential. Journal Harbin Institute of Technology New Series, 8(2), 116–119.

    CAS  Google Scholar 

  26. Ren, N. Q., Wang, B. Z., & Huang, J. C. (1997). Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnology and Bioengineering, 54, 197–200.

    Article  Google Scholar 

  27. Bachmann, A., Beard, V. L., & McCarty, P. L. (1985). Performance characteristics of the anaerobic baffled reactor. Water Research, 19(1), 99–106.

    Article  CAS  Google Scholar 

  28. Li, J. Z., Ren, N. Q., Qin, Z., Li, Y. F., Bao, H. X., & Jiang, P. (2004). Start up of hydrogen producing fermentation process with anaerobic activated sludge and acclimatization of the dominant ethanol-type fermentation population. High Technology Lett, 14(9), 90–94.

    CAS  Google Scholar 

  29. Hwang, M. H., Jang, N. J., Hyun, S. H., & Kim, I. S. (2004). Anaerobic biohydrogen production from ethanol fermentation: The role of pH. Journal of Biotechnology, 111, 297–309.

    Article  CAS  Google Scholar 

  30. Fang, H. H. P., & Liu, H. (2002). Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technology, 82, 87–93.

    Article  CAS  Google Scholar 

  31. Khanal, S. K., Chen, W. H., Li, L., & Sung, S. (2004). Biological hydrogen production: effect of pH and intermediate products. International Journal Hydrogen Energy, 29, 1123–1131.

    CAS  Google Scholar 

  32. Li, J. Z., Li, B. K., Zhu, G. F., Ren, N. Q., Bo, L. X., & He, J. G. (2007). Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR). International Journal Hydrogen Energy, 32, 3274–3283.

    Article  CAS  Google Scholar 

  33. Li, J. Z., Zheng, G. C., He, J. G., Chang, S., & Qin, Z. (2009). Hydrogen-producing capability of anaerobic activated sludge in three types of fermentations in a continuous stirred-tank reactor. Biotechnology Advances, 27, 573–577.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Natural Science Foundation of China (Contract No. 50808152), Provincial Science Foundation of Fujian (Grant No. 2010 J01314) and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-EW-402-02) for their supports for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge-fu Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Gf., Li, Jz. & Liu, Cx. Fermentative Hydrogen Production from Soybean Protein Processing Wastewater in an Anaerobic Baffled Reactor (ABR) Using Anaerobic Mixed Consortia. Appl Biochem Biotechnol 168, 91–105 (2012). https://doi.org/10.1007/s12010-011-9357-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9357-1

Keyword

Navigation