Skip to main content
Log in

Specificity of Carboxypeptidases from Actinomucor elegans and Their Debittering Effect on Soybean Protein Hydrolysates

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The specificities of carboxypeptidases from Actinomucor elegans were investigated by determining enzymatic activities at pH 7.0 and pH 4.0 with 16 Z-dipeptides and three Z-tripeptides as substrates. The debittering effect was evaluated and the free amino acid compositions of the soybean protein hydrolysates were analyzed before and after treatment with A. elegans extract at pH 7.0 and pH 4.0, with carboxypeptidases from Aspergillus oryzae as control. The results of the enzyme activity determinations indicated that carboxypeptidases from A. elegans prefer hydrophobic substrates, such as Z-Phe-Leu, Z-Phe-Tyr-Leu, and Z-Phe-Tyr. The sensory evaluation and free amino acid composition analysis showed that these carboxypeptidases are efficient tools for decreasing the bitterness of peptides because they liberated the fewest free amino acids, which consisted of 73% hydrophobic amino acids, under acidic conditions. Carboxypeptidases from A. elegans display promising prospects for future applications in the protein hydrolysate industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fallico, V., McSweeney, P. L. H., Horne, J., Pediliggieri, C., Hannon, J. A., Carpino, S., et al. (2005). Journal of Dairy Science, 88, 1288–1300.

    Article  CAS  Google Scholar 

  2. Spellman, D., O’Cuinn, G., & FitzGerald, R. J. (2009). Food Chem., 114, 440–446.

    Article  CAS  Google Scholar 

  3. Leksrisompong, P. P., Miracle, R. E., & Drake, M. (2010). Journal of Agricultural and Food Chemistry, 58, 6318–6327.

    Article  CAS  Google Scholar 

  4. Matoba, T., & Hata, T. (1972). Agricultural and Biological Chemistry, 37, 1423–1431.

    Article  Google Scholar 

  5. Otagiri, K., Shigenaga, T., Kanehisa, H., & Okai, H. (1984). Bulletin of the Chemical Society of Japan, 57, 90–96.

    Article  CAS  Google Scholar 

  6. Kanehisa, H., Miyake, I., Okai, H., Aoyagi, H., & Izumiya, N. (1984). Bulletin of the Chemical Society of Japan, 57, 819–822.

    Article  CAS  Google Scholar 

  7. Shinoda, I., Nosho, Y., Otagiri, K., Okai, H., & Fukui. (1986). Agricultural and Biological Chemistry, 50, 1785–1790.

    Article  CAS  Google Scholar 

  8. Ishibashi, N., Ono, I., & Kato, K. (1987). Agricultural and Biological Chemistry, 51, 2389–2394.

    Article  CAS  Google Scholar 

  9. Ishibashi, N., Sadamori, K., Yamamoto, O., Kanehisa, H., Kouge, K., Kikuchi, E., et al. (1987). Agricultural and Biological Chemistry, 51, 3309–3313.

    Article  CAS  Google Scholar 

  10. Nosho, Y., Otagiri, K., Shinoda, I., & Okai, H. (1985). Agricultural and Biological Chemistry, 49, 1829–1837.

    Article  CAS  Google Scholar 

  11. Kim, H., & Eunice, C. Y. L. (2006). Journal of Agricultural and Food Chemistry, 54, 10102–10111.

    Article  CAS  Google Scholar 

  12. Arai, S., Yamashita, M., Kato, H., & Fujimaki, M. (1970). Journal of Food Science, 35, 392–395.

    Article  CAS  Google Scholar 

  13. Umetsu, H., Matsuoka, H., & Ichishima, E. (1983). Journal of Agricultural and Food Chemistry, 31, 50–53.

    Article  CAS  Google Scholar 

  14. Ge, S. J., & Zhang, L. X. (1996). Applied Biochemistry and Biotechnology, 59, 159–165.

    Article  CAS  Google Scholar 

  15. Komai, T., Kawabata, C., Tojo, H., Gocho, S., & Ichishima, E. (2007). Fisheries Sci., 73, 404–411.

    Article  CAS  Google Scholar 

  16. Ichishima, E. (1972). Biochimica et Biophysica Acta, 258, 274–288.

    CAS  Google Scholar 

  17. Nakadai, T., Nasuno, S., & Iguchi, N. (1972). Agricultural and Biological Chemistry, 36, 1343–1352.

    Article  CAS  Google Scholar 

  18. Liu, F., Tachibana, S., Taira, T., Ishihara, M., Kato, F., & Yasuda, M. (2004). Journal of Industrial Microbiology and Biotechnology, 31, 572–580.

    Article  CAS  Google Scholar 

  19. Liu, F., Tachibana, S., Taira, T., Ishihara, M., & Yasuda, M. (2004). Journal of Industrial Microbiology and Biotechnology, 31, 23–28.

    Article  Google Scholar 

  20. Liu, F., & Yasuda, M. (2005). Journal of Industrial Microbiology and Biotechnology, 32, 487–489.

    Article  CAS  Google Scholar 

  21. Umetsu, H., Hishinuma, K., Wake, H., & Ichishima, E. (1996). Current Microbiology, 33, 44–48.

    Article  CAS  Google Scholar 

  22. Han, B. Z., Rombouts, F. M., & Nout, M. J. R. (2001). International Journal of Food Microbiology, 65, 1–10.

    Article  CAS  Google Scholar 

  23. Han, B. Z., Ma, Y., Rombouts, F. M., & Nout, M. J. R. (2003). Food Chem., 81, 27–34.

    Article  CAS  Google Scholar 

  24. Chou, C. C., & Hwan, C. H. (1994). Journal of the Science of Food and Agriculture, 66, 93–398.

    Article  Google Scholar 

  25. Wang, H. L., Vespa, J. B., & Hesselti, C. W. (1974). Applied Microbiology, 27, 906–911.

    CAS  Google Scholar 

  26. Li, L., Yang, Z. Y., Yang, X. Q., Zhang, G. H., Tang, S. Z., & Chen, F. (2008). Journal of Industrial Microbiology and Biotechnology, 35, 41–47.

    Article  Google Scholar 

  27. Doi, E., Shibata, D., & Matoba, T. (1981). Analytical Biochemistry, 118, 173–184.

    Article  CAS  Google Scholar 

  28. Macedo, A. C., Vieira, M., Pocas, R., & Malcata, F. X. (2000). Int Dairy J., 10, 769–774.

    Article  CAS  Google Scholar 

  29. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  30. Adler-Nissen, J. (1984). J Chem Tech Biotechnol., 34B, 215–222.

    CAS  Google Scholar 

  31. Adler-Nissen, J., & Olsen, H. S. (1979). ACS Symp Ser 92, 125–146.

    Google Scholar 

  32. Hughes, G. J., & Frutiger, S. (1990). Amino Acid Analysis. Boca Raton: CRC Press.

    Google Scholar 

  33. Nakadai, T., Nasuno, S., & Iguchi, N. (1972). Agricultural and Biological Chemistry, 36, 1481–1488.

    Article  CAS  Google Scholar 

  34. Nakadai, T., Nasuno, S., & Iguchi, N. (1973). Agricultural and Biological Chemistry, 37, 1237–1251.

    Article  CAS  Google Scholar 

  35. Nakadai, T., Nasuno, S., & Iguchi, N. (1973). Agricultural and Biological Chemistry, 37, 757–765.

    Article  CAS  Google Scholar 

  36. Disanto, M. E., Li, Q. Z., & Logan, D. A. (1992). Journal of Bacteriology, 174, 447–455.

    CAS  Google Scholar 

  37. Svendsen, I. (1976). Carlsberg Research Communications, 41, 237–291.

    Article  CAS  Google Scholar 

  38. Adler-Nissen, J. (1986). Enzymatic Hydrolysis of Food Protein. London: Elsevier.

    Google Scholar 

  39. Ottesen, M., & Svendsen, I. (1970). The Subtilisins. In G. Perlmann & L. Lorand (Eds.), Methods in Enzymology (pp. 199–215). New York: Academic Press.

    Google Scholar 

  40. Humiski, L. M., & Aluko, R. E. (2007). Journal of Food Science, 72, 605–611.

    Article  Google Scholar 

  41. Kukman, I., Zelenik, M., & Abram, V. (1995). Journal of Chromatography. A, 704, 113–120.

    Article  CAS  Google Scholar 

  42. Kukman, I., Zelenik, M., & Abram, V. (1996). Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 203, 272–276.

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (grant no. 30770056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, J., Li, L. & Yang, XQ. Specificity of Carboxypeptidases from Actinomucor elegans and Their Debittering Effect on Soybean Protein Hydrolysates. Appl Biochem Biotechnol 165, 1201–1210 (2011). https://doi.org/10.1007/s12010-011-9338-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9338-4

Keywords

Navigation