Skip to main content
Log in

Catalytic and Thermodynamic Properties of a Tannase Produced by Aspergillus niger GH1 Grown on Polyurethane Foam

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Tannase is an inducible enzyme with important applications in the food and pharmaceutical industries. This enzyme was produced by the fungus Aspergillus niger GH1 under solid-state fermentation using polyurethane foam as solid support and tannic acid as sole carbon source and tannase inducer. Physicochemical properties of A. niger tannase were characterized, and the kinetic and thermodynamics parameters on methyl gallate hydrolysis were evaluated. The enzyme was stable in a pH range of 2–8 and a functional temperature range of 25–65 °C. The highest k cat value was 2,611.10 s−1 at 65 °C. Tannase had more affinity for methyl gallate at 45 °C with a K M value of 1.82 mM and an efficiency of hydrolysis (k cat/K M) of 330.01 s−1 mM−1. The lowest E a value was found to be 21.38 kJ/mol at 4.4 mM of methyl gallate. The lowest free energy of Gibbs (ΔG) and enthalpy (ΔH) were found to be 64.86 and 18.56 kJ/mol, respectively. Entropy (ΔS) was −0.22 kJ/mol K. Results suggest that the A. niger GH1 tannase is an attractive enzyme for industrial applications due its catalytic and thermodynamical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mukherjee, G. (2007). Chim Oggi, 25, 65–69.

    CAS  Google Scholar 

  2. Chávez-González, M., Rodríguez-Durán, L. V., Balagurusamy, N., Prado-Barragán, A., Rodríguez, R., Contreras, J. C. and Aguilar, C. N. (2011). Food and Bioprocess Technology. doi:10.1007/s11947-011-0608-5.

  3. Lekha, P. K. and Lonsane, B. K. (1997) In S. Neidleman, A. Laskin (Eds.) Adv. Appl. Microbiol., vol. 44 (pp. 215–260). San Diego: Academic.

  4. Srivastava, A., & Kar, R. (2009). Brazilian Journal of Microbiology, 40, 782–789.

    Article  CAS  Google Scholar 

  5. Aguilar, C. N., & Gutiérrez-Sánchez, G. (2001). Food Science and Technology International, 7, 373–382.

    CAS  Google Scholar 

  6. Pourrat, H., Regerat, F., Pourrat, A., & Jean, D. (1985). Journal of Fermentation Technology, 63, 401–403.

    CAS  Google Scholar 

  7. Tanaka, T., Nonaka, G. I., Ishimatsu, M., Nishioka, I., & Kouno, I. (2001). Chemical & Pharmaceutical Bulletin, 49, 486–487.

    Article  CAS  Google Scholar 

  8. Dykstra, R. R., Brooker, A. T., Somerville Roberts, N. P., Miracle, G. S., Lant, N. J., Souter, P. F., Forrest, M., Ure, C. (2011) A catalytic laundry detergent composition comprising relatively low levels of water-soluble electrolyte. U.S. patent application 20110005003.

  9. Dueñas, M., Hernández, T., & Estrella, I. (2007). Eur. Food Res. Technol., 225, 493–500.

    Article  Google Scholar 

  10. Nuero, O. M., & Reyes, F. (2002). Letters in Applied Microbiology, 34, 413–416.

    Article  CAS  Google Scholar 

  11. Murugan, K., & Al-Sohaibani, S. A. (2010). Research Journal of Microbiology, 5, 262–271.

    Article  CAS  Google Scholar 

  12. Tejirian, A., & Xu, F. (2011). Enzyme and Microbial Technology, 48, 239–247.

    Article  CAS  Google Scholar 

  13. Bhardwaj, R., Singh, B., & Bhat, T. K. (2003). Journal of Basic Microbiology, 43, 449–461.

    Article  CAS  Google Scholar 

  14. Costa, A. M., Ribeiro, W. X., Kato, E., Monteiro, A. R. G., & Peralta, R. M. (2008). Brazilian Archives of Biology and Technology, 51, 399–404.

    Article  CAS  Google Scholar 

  15. Belmares, R., Contreras-Esquivel, J. C., Rodríguez-Herrera, R., Coronel, A. R., & Aguilar, C. N. (2004). LWT—Food Sci. Technol., 37, 857–864.

    CAS  Google Scholar 

  16. Aguilar, C. N., Augur, C., Favela-Torres, E., & Viniegra-González, G. (2001). Journal of Industrial Microbiology & Biotechnology, 26, 296–302.

    Article  CAS  Google Scholar 

  17. Aguilar, C. N., Augur, C., Favela-Torres, E., & Viniegra-González, G. (2001). Process Biochemistry, 36, 565–570.

    Article  CAS  Google Scholar 

  18. Tewari, Y. B., Schantz, M. M., Rekharsky, M. V., & Goldberg, R. N. (1996). The Journal of Chemical Thermodynamics, 28, 171–185.

    Article  CAS  Google Scholar 

  19. Goldberg, R. N. (1999). J. Phys. Chem. Ref. Data, 28, 931–965.

    Article  CAS  Google Scholar 

  20. Raab, T., Bel-Rhlid, R., Williamson, G., Hansen, C. E., & Chaillot, D. (2007). J. Mol. Catal. B: Enzym., 44, 60–65.

    Article  CAS  Google Scholar 

  21. Yu, X. W., & Li, Y. Q. (2006). J. Mol. Catal. B: Enzym., 40, 44–50.

    Article  CAS  Google Scholar 

  22. Beverini, M., & Metche, M. (1990). Sci. Aliments, 10, 807–816.

    CAS  Google Scholar 

  23. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  24. Mata-Gómez, M. A., Rodríguez, L. V., Ramos, E. L., Renovato, J., Cruz-Hernández, M. A., Rodríguez, R., et al. (2009). Journal of Microbiology and Biotechnology, 19, 987–996.

    Article  Google Scholar 

  25. Kasieczka-Burnecka, M., Kuc, K., Kalinowska, H., Knap, M., & Turkiewicz, M. (2007). Applied Microbiology and Biotechnology, 77, 77–89.

    Article  CAS  Google Scholar 

  26. Mahendran, B., Raman, N., & Kim, D. J. (2006). Applied Microbiology and Biotechnology, 70, 444–450.

    Article  CAS  Google Scholar 

  27. Rajakumar, G., & Nandy, S. C. (1983). Applied and Environmental Microbiology, 46, 525–527.

    CAS  Google Scholar 

  28. Sharma, S., Bhat, T. K., & Dawra, R. K. (1999). World J Microbiol. Biotechnol., 15, 673–677.

    Article  CAS  Google Scholar 

  29. Sabu, A., Kiran, G. S., & Pandey, A. (2005). Food Technol. Biotechnol., 43, 133–138.

    CAS  Google Scholar 

  30. Ramírez-Coronel, M. A., Viniegra-González, G., Darvill, A., & Augur, C. (2003). Microbiology, 149, 2941–2946.

    Article  Google Scholar 

  31. Naidu, R. B., Saisubramanian, N., Selvakumar, D., Janardhanan, S., & Puvanakrishnan, R. (2008). Cur. Trends Biotechnol. Pharm., 2, 201–207.

    CAS  Google Scholar 

  32. Chhokar, V., Sangwan, M., Beniwal, V., Nehra, K., & Nehra, K. S. (2010). Applied Biochemistry and Biotechnology, 160, 2256–2264.

    Article  CAS  Google Scholar 

  33. Chhokar, V., Seema, Beniwal, V., Salar, R., Nehra, K., Kumar, A., et al. (2010). Biotechnology and Bioprocess Engineering, 15, 793–799.

    Article  CAS  Google Scholar 

  34. Mahapatra, K., Nanda, R. K., Bag, S. S., Banerjee, R., Pandey, A., & Szakacs, G. (2005). Process Biochemistry, 40, 3251–3254.

    Article  CAS  Google Scholar 

  35. Sharma, S., Agarwal, L., & Saxena, R. K. (2008). Bioresource Technology, 99, 2544–2551.

    Article  CAS  Google Scholar 

  36. Gonçalves, H. B., Riul, A. J., Terenzi, H. F., Jorge, J. A., & Guimarães, L. H. S. (2011). J. Mol. Catal. B: Enzym., 71, 29–35.

    Article  Google Scholar 

  37. Battestin, V., & Macedo, G. A. (2007). Electronic Journal of Biotechnology, 10, 191–199.

    Article  CAS  Google Scholar 

  38. Battestin, V., & Macedo, G. A. (2007). Food Biotechnol., 21, 207–216.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by the funding program SEP-CONACYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristóbal Noe Aguilar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos, E.L., Mata-Gómez, M.A., Rodríguez-Durán, L.V. et al. Catalytic and Thermodynamic Properties of a Tannase Produced by Aspergillus niger GH1 Grown on Polyurethane Foam. Appl Biochem Biotechnol 165, 1141–1151 (2011). https://doi.org/10.1007/s12010-011-9331-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9331-y

Keywords

Navigation