Skip to main content

Advertisement

Log in

Biogasification of Green and Food Wastes Using Anaerobic-Phased Solids Digester System

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The performance of a laboratory-scale anaerobic-phased solid (APS) digester system treating food and green wastes was evaluated at thermophilic condition. The APS system comprised of four hydrolysis digesters and one biogasification reactor. The hydrolysis reactors were operated batchwised at a 12-day retention time, while the biogasification reactor was continuously operated at different hydraulic retention times (HRT). The biogas and methane yields from green waste were determined to be 0.438 and 0.252 L/g volatile solid (VS), respectively, with VS removal of 78%. The biogas and methane yields from food waste were 0.596 and 0.379 L/g VS, respectively, with VS removal of 85%. Hydrogen was produced from hydrolysis reactors during the digestion of food waste. Its content was 30.1% and 8.5% of the biogas produced on the first and second day of digestion, respectively. Hydrogen yield from the whole system was determined to be 0.029 L/g VS representing about 4.9% of the total biogas production from the system. The ratio between the volumes of biogasification and hydrolysis reactors (BR/HR) was found to be a factor that affects the process performance and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pavlostathis, S. G., & Giraldo-Gomez, E. (1991). Critical Reviews in Environmental Science and Technology, 21, 411–490.

    Article  CAS  Google Scholar 

  2. Cho, J. K., & Park, S. C. (1995). Bioresource Technology, 52, 245–253.

    Article  CAS  Google Scholar 

  3. Xu, H. W., Wang, J. Y., & Tay, J. H. (2002). Biotechnology Letters, 24, 757–761.

    Article  Google Scholar 

  4. Adney, W. S., Rivard, C. J., Grohmann, K., & Himmel, M. E. (1989). Biotechnology Letters, 11, 207–210.

    Article  CAS  Google Scholar 

  5. Ghosh, S. (1987). Journal of Environmental Engineering, 113, 1265–1284.

    Article  CAS  Google Scholar 

  6. Sarada, R., & Joseph, R. (1995). Process Biochemistry, 31, 337–340.

    Article  Google Scholar 

  7. Shin, H. S., Han, S. K., Song, Y. C., & Lee, C. Y. (2001). Water Research, 35, 3441–3447.

    Article  CAS  Google Scholar 

  8. Parawira, W., Murto, M., Read, J. S., & Mattiasson, B. (2005). Process Biochemistry, 40, 2945–2952.

    Article  CAS  Google Scholar 

  9. Zhang, Z., & Zhang, R. (1998). ASAE Annual International Meeting. Orlando, USA, paper No.980024.

  10. Vietez, E. R., & Ghosh, S. (1999). Biomass and Bioenergy, 16, 299–309.

    Article  Google Scholar 

  11. Mtz-Viturtia, A., Mata-Alvarez, J., & Cecchi, F. (1995). Resources. Conservation and Recycling, 13, 257–267.

    Article  Google Scholar 

  12. Wang, J. Y., Zhang, H., Stabnikova, O., & Tay, J. H. (2005). Process Biochemisrty, 40, 3580–3586.

    Article  CAS  Google Scholar 

  13. Zhang, R., & Zhang, Z. (2002). Transactions of CSAE, 18, 134–139.

    Google Scholar 

  14. Viéitez, E. R., & Ghosh, S. (1999). Biomass and Bioenergy, 16, 299–309.

    Article  Google Scholar 

  15. Mtz.Viturtia, A., & Mata-Alvarez, J. (1989). Biological Wastes, 29, 189–199.

    Article  Google Scholar 

  16. Bouallagui, H., Torrijos, M., Godon, J. J., Moletta, R., Ben Cheikh, R., Touhami, Y., et al. (2004). Biochemical Engineering Journal, 21, 193–197.

    Article  CAS  Google Scholar 

  17. Dinsdale, R. M., Premier, G. C., Hawkes, F. R., & Hawkes, D. L. (2000). Bioresource Technology, 72, 159–168.

    Article  CAS  Google Scholar 

  18. Raynal, J., Delgenes, J. P., & Moletta, R. (1998). Bioresource Technology, 65, 97–103.

    Article  CAS  Google Scholar 

  19. Verrier, D., Roy, F., & Albagnac, G. (1987). Biological Waste, 22, 163–177.

    Article  CAS  Google Scholar 

  20. Zhang, R., & Zhang, Z. (1999). Bioresource Technology, 68, 235–245.

    Article  CAS  Google Scholar 

  21. Withrow, W. B. (2006). Master thesis, University of California, Davis, CA, USA.

  22. Zhang, R., El-Mashad, H. M., Hartman, K., Wang, F., Liu, G., Choate, C., et al. (2007). Bioresource Technology, 98, 929–935.

    Article  CAS  Google Scholar 

  23. APHA. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington DC: American Public Health Association.

    Google Scholar 

  24. Yu, H. W., Samani, Z., Hanson, A., & Smith, G. (2002). Waste Management, 22, 1–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was conducted at University of California, Davis, with funding support in part from Public Interest Research Program of California Energy Commission and China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruihong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Zhang, R., El-Mashad, H.M. et al. Biogasification of Green and Food Wastes Using Anaerobic-Phased Solids Digester System. Appl Biochem Biotechnol 168, 78–90 (2012). https://doi.org/10.1007/s12010-011-9322-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9322-z

Keywords

Navigation