Skip to main content

Advertisement

Log in

Understanding the Influence of Phosphatidylcholine on the Molecular Weight of Hyaluronic Acid Synthesized by Streptococcus zooepidemicus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of phosphatidylcholine on the molecular weight properties of hyaluronic acid (HA) was studied in batch culture of Streptococcus zooepidemicus by adding phosphatidylcholine at the early stage of exponential phase. With the addition of 80 mg/L of phosphatidylcholine, maximum HA yield (2.47 g/L) and weight-average molecular weight (902.60 KDa) were achieved, increased by 17.4% and 67.1%, respectively, as compared to the control. Metabolic flux analysis was employed to study the mechanism of phosphatidylcholine on the molecular weight of HA. The normalized flux distribution maps based on fermentation data at phosphatidylcholine addition indicated that phosphatidylcholine resulted in higher flux flowing to the HA pathway and lower flux flowing to the glycolysis and biomass synthesis pathway, coupling with higher level of UDPNAG generation and extra regeneration of ATP. The GC-MS analysis of fatty acids in the plasma membrane showed that the addition of phosphatidylcholine could promote the mobility and permeability of the cell membrane, making the HA chain pass through the membrane more easily, thus decreasing the energy consumption. All these results led to higher molecular weight of hyaluronic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Radaeva, I. F., Kostina, G. A., & Zmievskii, A. V. (1997). Applied Biochemistry and Microbiology, 33, 111–115.

    Google Scholar 

  2. Swann, DA., and Kuo, JW. (1991) Stockton Press, New York, pp. 286–305

  3. Chong, F. B., & Nielsen, L. K. (2003). Biochemical Engineering Journal, 16(2), 153–162.

    Article  CAS  Google Scholar 

  4. Kang, S. W., Cho, E. R., & Kim, B. S. (2005). Journal of Microbiology and Biotechnology, 15, 510–518.

    CAS  Google Scholar 

  5. Kogan, G., Šoltés, L., Stern, R., & Gemeiner, P. (2007). Biotechnology Letters, 29, 17–25.

    Article  CAS  Google Scholar 

  6. Chong, F. B., Blank, L. M., Mclaughlin, R., & Nielsen, L. K. (2005). Applied Microbiology and Biotechnology, 66, 341–351.

    Article  CAS  Google Scholar 

  7. Gao, H. J., Du, G. C., & Chen, J. (2006). World Journal of Microbiology and Biotechnology, 22(4), 399–408.

    Article  CAS  Google Scholar 

  8. Armstrong, D. C., & Johns, M. R. (1997). Applied and Environmental Microbiology, 63, 2759–2764.

    CAS  Google Scholar 

  9. Jagannath, S., & Ramachandran, K. B. (2010). Biochemical Engineering Journal, 48, 148–158.

    Article  CAS  Google Scholar 

  10. Chen, W. Y., Marcellin, E., Hung, J., & Nielsen, L. K. (2009). Journal of Biological Chemistry, 284, 18007–18014.

    Article  CAS  Google Scholar 

  11. Duan, X. J., Niu, H. X., Tan, W. S., & Zhang, X. (2009). Journal of Microbiology and Biotechnology, 19, 299–306.

    CAS  Google Scholar 

  12. Bai, D. M., Zhao, X. M., Li, X. G., & Xu, S. M. (2004). Biochemical Engineering Journal, 18, 41–48.

    Article  CAS  Google Scholar 

  13. Kim, T. Y., & Lee, S. Y. (2006). Journal of Microbiology and Biotechnology, 16, 1139–1143.

    CAS  Google Scholar 

  14. Liu, H. J., Li, Q., Liu, D. H., & Zhong, J. J. (2006). Biochemical Engineering Journal, 28, 92–98.

    Article  Google Scholar 

  15. Bitter, T., & Muir, H. M. (1962). Analytical Biochemistry, 4, 330–333.

    Article  CAS  Google Scholar 

  16. Laurent, T. C., Ryan, M., & Pietruszkiewicz, A. (1960). Biochem Biophys Acta, 42, 476–485.

    Article  CAS  Google Scholar 

  17. Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). Journal of Biological Chemistry, 226, 497–509.

    CAS  Google Scholar 

  18. Liu, L., Wang, M., & Du, G. C. (2008). Letters in Applied Microbiology, 46, 383–388.

    Article  CAS  Google Scholar 

  19. Widner, B., Behr, R. V., Dollen, S., Tang, M., Heu, T., & Sloma, A. (2005). Applied and Environmental Microbiology, 71, 3747–3752.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support obtained from the National “973” Project (numbers 2007CB714304 and 2007CB707804), 863 High-Tech Project (numbers 2009AA02Z207, 2009AA033001, and 2009AA033002) is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianwei Tan.

Appendices

Appendix. 1

Table 3 Metabolic reactions in S. zooepidemicus

Appendix. 2

Table 4 Metabolites used in metabolic flux analysis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J., Wang, M., Chen, Y. et al. Understanding the Influence of Phosphatidylcholine on the Molecular Weight of Hyaluronic Acid Synthesized by Streptococcus zooepidemicus . Appl Biochem Biotechnol 168, 47–57 (2012). https://doi.org/10.1007/s12010-011-9320-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9320-1

Keywords

Navigation