Skip to main content
Log in

Improvement of l-Arginine Production by Overexpression of a Bifunctional Ornithine Acetyltransferase in Corynebacterium crenatum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Ornithine acetyltransferase (EC 2.3.1.35; OATase) gene (argJ) from the l-arginine-producing mutant Corynebacterium crenatum SYPA5-5 was cloned, sequenced, and expressed in Escherichia coli BL21 (DE3). Analysis of the argJ sequence revealed that the argJ coded a polypeptide of 388 amino acids with a calculated molecular weight of 39.7 kDa. In this study, the function of the OATase (argJ) of C. crenatum SYPA5-5 has been identified as a conserved ATML sequence for the autolysis of the protein to α- and β-subunits. When the argJ regions corresponding to the α- and β-subunits were cloned and expressed separately in E. coli BL21, OATase activities were abolished. At the same time, a functional study revealed that OATase from C. crenatum SYPA5-5 was a bifunctional enzyme with the functions of acetylglutamate synthase (EC 2.3.1.1, NAGS) and acetylornithine deacetylase (EC 3.5.1.16, AOase) activities. In order to investigate the effects of the overexpression of the argJ gene on l-arginine production, the argJ gene was inserted into pJCtac to yield the recombinant shuttle plasmid pJCtac-argJ and then transformed into C. crenatum SYPA5-5. The results showed that the engineered strains could not only express more OATase (90.9%) but also increase the production of l-arginine significantly (16.8%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lu, C. D. (2006). Applied Microbiology and Biotechnology, 70, 261–272.

    Article  CAS  Google Scholar 

  2. Xu, H., Dou, W., Xu, H., Zhang, X., Rao, Z., Shi, Z., et al. (2009). Biochemical Engineering Journal, 43, 41–51.

    Article  CAS  Google Scholar 

  3. Cunin, R., Glansdorff, N., Pierard, A., & Stalon, V. (1986). Microbiological Reviews, 50, 314–352.

    CAS  Google Scholar 

  4. Xu, Y., Labedan, B., & Glansdorff, N. (2007). Microbiology and Molecular Biology Reviews, 71, 36–47.

    Article  CAS  Google Scholar 

  5. Rajagopal, B. S., DePonte, J., Tuchman, M., & Malamy, M. H. (1998). Applied and Environmental Microbiology, 64, 1805–1811.

    CAS  Google Scholar 

  6. Harris, B. Z., & Singer, M. (1998). Journal of Bacteriology, 180, 6412–6414.

    CAS  Google Scholar 

  7. Marc, F., Weigel, P., Legrain, C., Glansdorff, N., & Sakanyan, V. (2001). Journal of Biological Chemistry, 276, 25404–25410.

    Article  CAS  Google Scholar 

  8. Crabeel, M., Abadjieva, A., Hilven, P., Desimpelaere, J., & Soetens, O. (1997). European Journal of Biochemistry, 250, 232–241.

    Article  CAS  Google Scholar 

  9. Charlier, D. (2004). Biochemical Society Transactions, 32, 310–313.

    Article  CAS  Google Scholar 

  10. Fernandez-Murga, M. L., & Rubio, V. (2008). Journal of Bacteriology, 90, 3018–3025.

    Article  Google Scholar 

  11. Sakanyan, V., Petrosyan, P., Lecocq, M., Boyen, A., Legrain, C., Demarez, M., et al. (1996). Microbiology, 142(Pt 1), 99–108.

    Article  CAS  Google Scholar 

  12. Ledwidge, R., & Blanchard, J. S. (1999). Biochemistry, 38, 3019–3024.

    Article  CAS  Google Scholar 

  13. Shi, D., Morizono, H., Yu, X., Roth, L., Caldovic, L., Allewell, N. M., et al. (2005). Journal of Biological Chemistry, 280, 14366–14369.

    Article  CAS  Google Scholar 

  14. Shinners, E. N., & Catlin, B. W. (1978). Journal of Bacteriology, 136, 131–135.

    CAS  Google Scholar 

  15. Martin, P. R., & Mulks, M. H. (1992). J Bacteriol, 174, 2694–2701.

    CAS  Google Scholar 

  16. Baetens, M., Legrain, C., Boyen, A., & Glansdorff, N. (1998). Microbiology, 144, 479–492.

    Article  CAS  Google Scholar 

  17. Kimura, E. (2003). Advances in Biochemical Engineering/Biotechnology, 79, 37–57.

    Article  CAS  Google Scholar 

  18. Hwang, G.-H., & Cho, J.-Y. (2010). Journal of Industrial Microbiology and Biotechnology, 37, 1131–1136.

    Article  CAS  Google Scholar 

  19. Marc, F., Weigel, P., Legrain, C., Almeras, Y., Santrot, M., Glansdorff, N., et al. (2000). European Journal of Biochemistry, 267, 5217–5226.

    Article  CAS  Google Scholar 

  20. Eikmanns, B. J., Thum-Schmitz, N., Eggeling, L., Ludtke, K. U., & Sahm, H. (1994). Microbiology, 140, 1817–1828.

    Article  CAS  Google Scholar 

  21. Kirchner, O., & Tauch, A. (2003). Journal of Biotechnology, 104, 287–299.

    Article  CAS  Google Scholar 

  22. Van der Rest, M. E., Lange, C., & Molenaar, D. (1999). Applied Microbiology and Biotechnology, 52, 541–545.

    Article  Google Scholar 

  23. Xu, M. J., Rao, Z. M., Xu, H., Lan, C. Y., Dou, W. F., Zhang, X. M., et al. (2011). Applied Biochemistry and Biotechnology, 163, 707–719.

    Article  CAS  Google Scholar 

  24. Ikeda, M., & Nakagawa, S. (2003). Appl Microbiol Biot, 62, 99–109.

    Article  CAS  Google Scholar 

  25. Wendisch, V., Glansdorff, N., & Xu, Y. (2007). Microbial arginine biosynthesis: Pathway, regulation and industrial production (pp. 219–257). Berlin: Springer.

    Book  Google Scholar 

  26. Abadjieva, A., Hilven, P., Pauwels, K., & Crabeel, M. (2000). Journal of Biological Chemistry, 275, 11361–11367.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Programs for New Century Excellent Talents in University (no. NCET-07-0380, NCET-10-0459), National Basic Research Program (973 Program) (no. 2007CB707804), and the National High-Tech Programs of China (no. 2006AA020104, 2006AA020301, 2007AA02Z207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dou, W., Xu, M., Cai, D. et al. Improvement of l-Arginine Production by Overexpression of a Bifunctional Ornithine Acetyltransferase in Corynebacterium crenatum . Appl Biochem Biotechnol 165, 845–855 (2011). https://doi.org/10.1007/s12010-011-9302-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9302-3

Keywords

Navigation