Skip to main content
Log in

Investigation of the Effective Action Distance Between Hematopoietic Stem/Progenitor Cells and Human Adipose-Derived Stem Cells During Their In Vitro Co-culture

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The in vitro suitable action distance between umbilical cord blood-derived hematopoietic stem/progenitor cells and its feeder cell, human adipose-derived stem cells, during their co-culture, was investigated through a novel transwell co-culture protocol, in which the distance between the two culture chambers where each cell type is growing can be adjusted from 10 to 450 μm. The total cell number was determined with a hemacytometer, and the cell morphology was observed under an inverted microscope each day. After 7 days of co-culture, the fold-expansion, surface antigen expression of CD34+ and CFU-GM assay of the hematopoietic mononuclear cells (MNCs) were analyzed. The results showed that there was an optimal communication distance at around 350 μm between both types of stem cells during their in vitro co-culture. By using this distance, the UCB-MNCs and CD34+ cells were expanded by 15.1 ± 0.2 and 5.0 ± 0.1-fold, respectively. It can therefore be concluded that the optimal action distance between stem cells and their supportive cells, when cultured together for 7 days, is of around 350 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tung, S. S., Parmar, S., Robinson, S. N., et al. (2010). Best Practice and Research Clinical Haematology, 23(2), 245–257.

    Article  CAS  Google Scholar 

  2. De Toni, F., Poglio, S., Ben Youcef, A., et al. (2011). Stem Cells and Development. doi:10.1089/scd.2011.0044.

  3. Jiang, S., Zagozdzon, R., Jorda, M. A., et al. (2010). Journal of Biological Chemistry, 285(46), 35471–35478.

    Article  CAS  Google Scholar 

  4. Duohui, J., Ana-Violeta, F., Nael, A., et al. (2010). Haematologica, 95(4), 542–550.

    Article  Google Scholar 

  5. Hayashi, N., Takahashi, K., Abe, Y., et al. (2009). Life Sciences, 84(17–18), 598–605.

    Article  CAS  Google Scholar 

  6. Dexter, T. M., Allen, T. D., & Lajtha, L. G. (1977). Journal of Cellular Physiology, 91, 335–344.

    Article  CAS  Google Scholar 

  7. Chute, J. P., Fung, J., Muramoto, G., et al. (2004). Experimental Hematology, 32, 308–317.

    Article  Google Scholar 

  8. Kedong, S., Xiubo, F., Tianqing, L., et al. (2010). Journal of Materials Science: Materials in Medicine, 21(12), 3183–3193.

    Article  Google Scholar 

  9. Song, K. D., Yin, Y. Q., Lv, C., et al. (2009). Asia-Pacific Journal of Chemical Engineering. doi:10.1002/apj.507.

  10. Mukhopadhyay, A., Madhusudhan, T., & Kumar, R. (2004). Advances in Biochemical Engineering/Biotechnology, 86, 215–253.

    CAS  Google Scholar 

  11. Kawada, H., Ando, K., Tsuji, T., et al. (1999). Experimental Hematology, 27, 904–915.

    Article  CAS  Google Scholar 

  12. Takagi, M., Horii, K., & Yoshida, T. (2003). Journal of Artificial Organs, 6, 130–137.

    Article  Google Scholar 

  13. Takagi, M. (2005). Journal of Bioscience and Bioengineering, 99, 189–196.

    Article  CAS  Google Scholar 

  14. Liu, Y., Liu, T. Q., Fan, X. B., et al. (2008). Journal of Chemical Engineering of Chinese Universities, 22(3), 471–477.

    CAS  Google Scholar 

  15. Zhu, Y. X., Liu, T. Q., Song, K. D., et al. (2008). Cell Biochemistry and Function, 26(6), 664–675.

    Article  CAS  Google Scholar 

  16. Zhu, Y. X., Liu, T. Q., Song, K. D., et al. (2009). Biotechnology Journal, 8, 1198–1209.

    Article  Google Scholar 

  17. Nielsen, L. K. (1999). Annual Review of Biomedical Engineering, 1, 129–152.

    Article  CAS  Google Scholar 

  18. Sengupta, A., Arnett, J., Dunn, S., et al. (2010). Blood, 116(1), 81–84.

    Article  CAS  Google Scholar 

  19. Tanavde, V. M., Malehorn, M. T., Lumkul, R., et al. (2002). Experimental Hematology, 30, 816–823.

    Article  CAS  Google Scholar 

  20. Fløisand, Y., & Sioud, M. (2010). Methods in Molecular Biology, 629, 507–523.

    Article  Google Scholar 

  21. Chi, P., Chen, Y., Zhang, L., et al. (2010). Nature, 467(7317), 849–853.

    Article  CAS  Google Scholar 

  22. Pusic, I., & DiPersio, J. F. (2010). Current Opinion in Hematology, 17(4), 319–326.

    Article  CAS  Google Scholar 

  23. Zhao, G. F., Song, K. D., Liu, T. Q., et al. (2008). Tissue Engineering. Part A, 14(5), 843.

    Google Scholar 

  24. Song, K. D., Zhao, G. F., Liu, T. Q., et al. (2009). Biotechnology Letters, 31, 923–928.

    Article  CAS  Google Scholar 

  25. Noll, T., Jelinek, N., Schmidt, S., et al. (2002). Advances in Biochemical Engineering/Biotechnology, 74, 111–128.

    Article  CAS  Google Scholar 

  26. Yanai, N., Matsui, N., Matsuda, K. I., et al. (1999). Experimental Hematology, 27, 1087–1096.

    Article  CAS  Google Scholar 

  27. Li, W. M., Johnson, S. A., Shelley, W. C., et al. (2003). Blood, 102, 4345–4353.

    Article  CAS  Google Scholar 

  28. Koh, S. H., Choi, H. S., Park, E. S., et al. (2005). Biochemical and Biophysical Research Communications, 329, 1039–1045.

    Article  CAS  Google Scholar 

  29. Rawat, V. P., Arseni, N., Ahmed, F., et al. (2010). Proceedings of the National Academy of Sciences, 107(39), 16946–16951.

    Article  CAS  Google Scholar 

  30. Chitteti, B. R., Cheng, Y. H., Streicher, D. A., et al. (2010). Journal of Cellular Biochemistry, 111(2), 284–294.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The National Natural Sciences Foundation of China (30670525, 30700181), the Fundamental Research Funds for the Central Universities (DUT11SM09), and Doctoral Fund of Ministry of Education of China (20070141055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianqing Liu.

Additional information

Kedong Song, Hai Wang, Hong Wang, and Ling Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, K., Wang, H., Wang, H. et al. Investigation of the Effective Action Distance Between Hematopoietic Stem/Progenitor Cells and Human Adipose-Derived Stem Cells During Their In Vitro Co-culture. Appl Biochem Biotechnol 165, 776–784 (2011). https://doi.org/10.1007/s12010-011-9295-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9295-y

Keywords

Navigation