Skip to main content
Log in

Effect of Agitation Rate on Ethanol Production from Sugar Maple Hemicellulosic Hydrolysate by Pichia stipitis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Concentrated dilute acid hydrolysate was obtained from hot water extracts of Acer saccharum (sugar maple) and was fermented to ethanol by Pichia stipitis in a 1.3-L-benchtop bioreactor. The conditions under which the highest ethanol yield was achieved were when the air flow rate was set to 100 cm3 and the agitation rate was set to 150 rpm resulting in an overall mass transfer coefficient (K L a) of 0.108 min−1. A maximum ethanol concentration of 29.7 g/L was achieved after 120 h of fermentation; however, after 90 h of fermentation, the ethanol concentration was only slightly lower at 29.1 g/L with a yield of 0.39 g ethanol per gram of sugar consumed. Using the same air flow rate and adjusting the agitation rate resulted in lower ethanol yields of 0.25 g/g at 50 rpm and 0.30 g/g at 300 rpm. The time it takes to reach the maximum ethanol concentration was also affected by the agitation rate. The ethanol concentration continued to increase even after 130 h of fermentation when the agitation rate was set at 50 rpm, whereas the maximum ethanol concentration was reached after only 68.5 h at 300 rpm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Antizar-Ladislao, B., & Turrion-Gomez, J. L. (2008). Biofuels, Bioproducts and Biorefining, 2, 455–469.

    Article  CAS  Google Scholar 

  2. Amidon, T. E., Wood, C. D., Shupe, A. M., Wang, Y., Graves, M., & Liu, S. (2008). Journal of Biobased Materials and Bioenergy, 2, 100.

    Article  Google Scholar 

  3. Lee, J. (1997). Journal of Biotechnology, 56, 1–24.

    Article  CAS  Google Scholar 

  4. Hu, R., Lin, L., Liu, T., & Liu, S. (2010). Bioresource Technology, 101, 3586–3594.

    Article  CAS  Google Scholar 

  5. Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., et al. (1999). Enzyme and Microbial Technology, 24, 151–159.

    Article  CAS  Google Scholar 

  6. Palmqvist, E., & Hahn-Hägerdal, B. (2000). Bioresource Technology, 74, 25–33.

    Article  CAS  Google Scholar 

  7. Diaz, M. J., Ruiz, E., Romero, I., Cara, C., Moya, M., & Castro, E. (2009). World Journal of Microbiology & Biotechnology, 25, 891–899.

    Article  CAS  Google Scholar 

  8. Martinez, A., Rodriguez, M. E., York, S. W., Preston, J. F., & Ingram, L. O. (2000). Biotechnology and Bioengineering, 69, 526–536.

    Article  CAS  Google Scholar 

  9. Hahn-Hägerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I., & Gorwa-Grauslund, M. F. (2007). Applied Microbiology and Biotechnology, 74, 937–953.

    Article  Google Scholar 

  10. Slininger, P. J., Branstrator, L. E., Bothast, R. J., Okos, M. R., & Ladisch, M. R. (1991). Biotechnology and Bioengineering, 37, 973–980.

    Article  CAS  Google Scholar 

  11. Jeffries, T. W., Grigoriev, I. V., Grimwood, J., Laplaza, J. M., Aerts, A., Salamov, A., et al. (2007). Nature Biotechnology, 25, 319–326.

    Article  CAS  Google Scholar 

  12. Dellweg, H., Rizzi, M., & Klein, C. (1989). Journal of Biotechnology, 12, 111–122.

    Article  CAS  Google Scholar 

  13. Kumar, A., Singh, L. K., & Ghosh, S. (2009). Bioresource Technology, 100, 3293–3297.

    Article  CAS  Google Scholar 

  14. Canilha, L., Carvalho, W., Felipe, M. G., Silva, J. B., & Giulietti, M. (2010). Applied Biochemistry and Biotechnology, 161, 84–92.

    Article  CAS  Google Scholar 

  15. Löser, C., Schröder, A., Deponte, S., & Bley, T. (2005). Engineering in Life Sciences, 5, 325–332.

    Article  Google Scholar 

  16. Jeppsson, M., Johansson, B., Hahn-Hagerdal, B., & Gorwa-Grauslund, M. F. (2002). Applied and Environmental Microbiology, 68, 1604–1609.

    Article  CAS  Google Scholar 

  17. Silva, J. P. A., Mussatto, S. I., & Roberto, I. C. (2010). Applied Biochemistry and Biotechnology, 162, 1306–1315.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to NYSERDA and US DOE for the financial support leading to this paper. The authors are indebted to the Biorefinery Research Institute (BRI) for the financial and research support. Special thanks go to Dr. Amidon, without whose support, this paper would not have been possible. Mr. Christopher Wood and Mr. John Buyando have contributed in producing the wood hydrolysate for this study. Mr. D. Kiemle has provided support in NMR analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijie Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shupe, A.M., Liu, S. Effect of Agitation Rate on Ethanol Production from Sugar Maple Hemicellulosic Hydrolysate by Pichia stipitis . Appl Biochem Biotechnol 168, 29–36 (2012). https://doi.org/10.1007/s12010-011-9285-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9285-0

Keywords

Navigation