Skip to main content
Log in

In Vitro Antioxidant Potential of Some Soil Fungi: Screening of Functional Compounds and their Purification from Penicillium citrinum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fungal isolates (Aspergillus wentii 1, A. wentii 2, Penicillium citrinum, Penicillium granulatum) were selected to study their in vitro antioxidant potential by various assay procedures. Czapek–Dox’s medium was selected for the growth of fungi as it supported the best antioxidant activity based on their EC50 values, P. citrinum was the best followed by P. granulatum, A. wentii 1, and A. wentii 2. The chromatographic analyses showed several compounds possessing antioxidant activity in the fungal extracts. Two such compounds were partially purified from P. citrinum which demonstrated potent antioxidant activity, equally effective or better than some of the standard antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Meghashri, S., Kumar, H. V., & Gopal, S. (2010). Antioxidant properties of a novel flavonoid from leaves of Leucas aspera. Food Chemistry, 122, 105–110.

    Article  CAS  Google Scholar 

  2. Singh, R. P., Sharad, S., & Kapur, S. (2004). Free radicals and oxidative stress in neurodegenerative diseases: relevance of dietary antioxidants. Journal Indian Academy Clinical Medicine, 5, 218–225.

    Google Scholar 

  3. Yang, J.-H., Lin, H.-C., & Mau, J.-L. (2002). Antioxidant properties of several commercial mushrooms. Food Chemistry, 77, 229–235.

    Article  CAS  Google Scholar 

  4. Devasagayam, T. P. A., & Kamat, J. P. (2002). Biological significance of singlet oxygen. Indian Journal of Experimental Biology, 40, 680–692.

    CAS  Google Scholar 

  5. Halliwell, B. (2000). Lipid peroxidation, antioxidants and cardiovascular disease: how should we move forward? Cardiovascular Research, 47, 410–418.

    Article  CAS  Google Scholar 

  6. Trouillas, P., Marsa, P., Siri, D., Lazzaron, R., & Duroux, J.-L. (2006). A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: the specificity of the 3-OH site. Food Chemistry, 97, 679–688.

    Article  CAS  Google Scholar 

  7. Pereira, J. A., Oliveira, I., Sousa, A., Valentaό, P., Andrade, P. B., Ferreira, I. C. F. R., et al. (2007). Walnut (Juglans regia L.) leaves: phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food and Chemical Toxicology, 45, 2287–2295.

    Article  CAS  Google Scholar 

  8. Bhattarai, H. D., Paudel, B., Hong, S. G., Lee, H. K., & Yim, J. H. (2008). Thin layer chromatography analysis of antioxidant constituents of lichens from Antarctica. Journal of Natural Medicine, 62, 481–484.

    Article  Google Scholar 

  9. Zhao, R., Xiang, Z. J., Ye, T. X., Yaun, J. Y., & Guo, X. Z. (2006). Antioxidant activities of Salvia miltiorrhiza and Panax notoginseng. Food Chemistry, 99, 767–774.

    Article  CAS  Google Scholar 

  10. Chang, L. W., Yen, W. J., Huang, S. C., & Duh, P. D. (2002). Antioxidant activity of sesame coat. Food Chemistry, 78, 347–354.

    Article  CAS  Google Scholar 

  11. Othman, A., Ismail, A., Ghani, N. A., & Adenan, I. (2007). Antioxidant capacity and phenolic content of cocoa beans. Food Chemistry, 100, 1523–1530.

    Article  CAS  Google Scholar 

  12. Kang, K. S., Yokozawa, T., Kim, H. Y., & Park, J. H. (2006). Study on the nitric oxide scavenging effects of ginseng and its compound. Journal of Agricultural and Food Chemistry, 54, 2558–2562.

    Article  CAS  Google Scholar 

  13. Singleton, V. L., Ortofehr, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrate and antioxidants by means of Folin–Ciocalteau reagent. Methods in Enzymology, 299, 152–178.

    Article  CAS  Google Scholar 

  14. Maron, D., & Ames, B. (1983). Revised methods for the Salmonella mutagenicity test. Mutation Research, 113, 173–215.

    CAS  Google Scholar 

  15. Ciapetti, G., Cenni, E., Pratelli, L., & Pizzoferrato, A. (1993). In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials, 14, 359–364.

    Article  CAS  Google Scholar 

  16. Behera, B. C., Verma, N., Sonone, A., & Makhija, U. (2006). Determination of antioxidative potential of lichen Usnea ghattensis in vitro. LWT Food Science and Technology, 39, 80–85.

    Article  CAS  Google Scholar 

  17. Chandra, P., & Arora, D. S. (2009). Antioxidant activity of fungi isolated from soil of different areas of Punjab, India. Journal of Applied and Natural Science, 1, 123–128.

    Google Scholar 

  18. Huang, W. Y., Cai, Y. Z., Hyde, K. D., Corke, H., & Sun, M. (2007). Endophytic fungi from Nerium oleander L (Apocynaceae): main constituents and antioxidant activity. World Journal of Microbiology & Biotechnology, 23, 1253–1263.

    Article  CAS  Google Scholar 

  19. Song, T. Y., & Yen, G. C. (2002). Antioxidant properties of Antrodia camphorata in submerged culture. Journal of Agricultural and Food Chemistry, 50, 3322–3327.

    Article  CAS  Google Scholar 

  20. Gebhardt, P., Dornberger, K., Gollmick, F. A., Grafe, N., Hartl, A., Gorls, H., et al. (2007). Quercinol, an anti-inflammatory chromene from the wood-rotting fungus Daedalea quercina (Oak Mazegill). Bioorganic & Medicinal Chemistry Letters, 17, 2558–2560.

    Article  CAS  Google Scholar 

  21. Bounatirou, S., Smiti, S., Miguel, M. G., Falerio, L., Rejeb, M. N., Neffati, M., et al. (2007). Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food Chemistry, 105, 146–155.

    Article  CAS  Google Scholar 

  22. Liua, X., Zhaoa, M., Wanga, J., Yangb, B., & Jiang, Y. (2008). Antioxidant activity of methanolic extract of emblica fruit (Phyllanthus emblica L.) from six regions in China. Journal of Food Composition and Analysis, 21, 219–228.

    Article  Google Scholar 

  23. Lo, K. M., & Cheung, P. C. K. (2005). Antioxidant activity of extracts from the fruiting bodies of Agrocybe aegerita var. alba. Food Chemistry, 89, 533–539.

    Article  CAS  Google Scholar 

  24. Lee, I.-H., Hung, Y.-H., & Chou, C.-C. (2007). Total phenolic and anthocyanin contents, as well as antioxidant activity, of black bean koji fermented by Aspergillus awamori under different culture conditions. Food Chemistry, 104, 936–942.

    Article  CAS  Google Scholar 

  25. Gursoy, N., Sarikurkcu, C., Cengiz, M., & Solak, M. H. (2009). Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species. Food and Chemical Toxicology, 47, 2381–2388.

    Article  CAS  Google Scholar 

  26. Elzaawely, A. A., Xuan, T. D., Koyama, H., & Tawata, S. (2007). Antioxidant activity and contents of essential oil and phenolic compounds in flowers and seeds of Alpinia zerumbet (Pers.) B.L. Burtt. & R.M. Sm. Food Chemistry, 104, 1648–1653.

    Article  CAS  Google Scholar 

  27. Thitilertdecha, N., Teerawutgulrag, A., & Rakariyatham, N. (2008). Antioxidant and antibacterial activities of Nephelium lappaceum L. extracts. LWT Food Science and Technology, 41, 2029–2035.

    Article  CAS  Google Scholar 

  28. Arora, D. S., & Chandra, P. (2010). Assay of antioxidant potential of two Aspergillus isolates by different methods under various physio-chemical conditions. Brazilian Journal of Microbiology, 41, 465–477.

    Article  Google Scholar 

  29. Arora, D. S., & Chandra, P. (2010). Optimization of antioxidant potential Aspergillus terreus through different statistical approaches. Biotechnology and Applied Biochemistry, 57, 77–86.

    Article  CAS  Google Scholar 

  30. Sharma, R. K., Chandra, P., & Arora, D. S. (2010). Antioxidant properties and nutritional value of wheat straw bioproccessed Phanerocheate chrysosporium and Daedalea flavida. The Journal of General and Applied Microbiology, 56, 519–523.

    Article  CAS  Google Scholar 

  31. Moon, B. S., Ryoo, I. J., Yun, B. S., Bae, K. S., Lee, K. D., Yoo, I. D., et al. (2006). Glyscavins A, B and C, new phenolic glycoside antioxidants produced by a fungus Mycelia sterilia F020054. The Journal of Antibiotics, 59, 735–739.

    Article  CAS  Google Scholar 

  32. Rios, M. F., Pajan, C. M. G., Galan, R. H., Sanchez, A. J. M., & Callado, I. G. (2006). Synthesis and free radical scavenging activity of a novel metabolite from the fungus Colletotrichum gloeosporioides. Bioorganic & Medicinal Chemistry Letters, 16, 5836–5839.

    Article  Google Scholar 

  33. Harper, K., Arif, A., Ford, E. J., Strobel, G. A., Porco, J. A., Jr., Tomar, D. P., et al. (2003). Pestacin: a 1,3-dihydro isobenzofuran from Pestalotiopsis micropora possessing antioxidant and antimycotic activities. Tetrahedron, 59, 2471–2476.

    Article  CAS  Google Scholar 

  34. Yen, G. C., & Chang, Y. C. (1999). Medium optimization for the production of antioxidants from Aspergillus candidus. Journal of Food Protection, 62, 657–661.

    CAS  Google Scholar 

  35. Yen, G. C., & Lee, C. A. (1996). Antioxidant activity of extracts from molds. Journal of Food Protection, 59, 1327–1330.

    Google Scholar 

Download references

Acknowledgment

Priyanka Chandra is thankful to UGC for the Rajiv Gandhi National Fellowship vide no. F.42 (SC)/2008 (SA-III).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daljit Singh Arora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arora, D.S., Chandra, P. In Vitro Antioxidant Potential of Some Soil Fungi: Screening of Functional Compounds and their Purification from Penicillium citrinum . Appl Biochem Biotechnol 165, 639–651 (2011). https://doi.org/10.1007/s12010-011-9282-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9282-3

Keywords

Navigation