Skip to main content
Log in

Effects of Sucrose and Trehalose on Stability, Kinetic Properties, and Thermal Aggregation of Firefly Luciferase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, we used sugars as stabilizing additives to improve the thermostability and to inhibit aggregation of firefly luciferase. The combination of sucrose and trehalose has a strong stabilizing effect on firefly luciferase activity and prevents its thermoinactivation. These additives can also increase optimum temperature. It has been shown that the presence of both sucrose and trehalose can inhibit thermal aggregation of firefly luciferase and decrease bioluminescence decay rate. In order to understand the molecular mechanism of thermostabilization, we investigated the effects of sucrose and trehalose combination on the secondary structure of luciferase by Fourier transform infrared spectroscopy. Minor changes in content of secondary structure of firefly luciferase are observed upon treatment with additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wilson, T., & Hasting, J. W. (1998). Annual Review of Cell and Developmental Biology, 14, 197–230.

    Article  CAS  Google Scholar 

  2. McElory, W. D., & Selinger, H. H. (1962). Federation Proceedings, 21, 1006–1012.

    Google Scholar 

  3. McElory, W. D., Selinger, H. H., & White, E. H. (1969). Photochemical & Photobiological Sciences, 10, 153–170.

    Google Scholar 

  4. Deluca, M. (1976). Advances in Enzymology Relate Molecular Biology, 44, 37–68.

    CAS  Google Scholar 

  5. Seliger, H. H., & McElroy, W. D. (1960). Archives of Biochemistry and Biophysics, 88, 136–141.

    Article  CAS  Google Scholar 

  6. Ando, Y., Niwa, K., Yamada, N., Enomoto, T., Irie, T., Kubota, H., et al. (2008). Nature Photonics, 2, 44–47.

    Article  CAS  Google Scholar 

  7. Conti, E., Franks, N. P., & Brick, P. (1996). Structure, 4, 287–298.

    Article  CAS  Google Scholar 

  8. Nakatsu, T., Ichiyama, S., Hiratake, J., Saldanha, A., Kobashi, N., Sakata, K., et al. (2006). Nature, 440, 372–376.

    Article  CAS  Google Scholar 

  9. Roda, A., Pasini, P., Mirasoli, M., Michelini, E., & Guardigli, M. (2004). Trends in Biotechnology, 22, 295–303.

    Article  CAS  Google Scholar 

  10. Gorus, F., & Schram, E. (1979). Clinical Chemistry, 25, 512–519.

    CAS  Google Scholar 

  11. Kricka, L. J. (1991). Clinical Chemistry, 37, 1472–1481.

    CAS  Google Scholar 

  12. Kricka, L. J. (1999). Analytical Chemistry, 71, 305–308.

    Article  Google Scholar 

  13. Wannlund, J., & Deluca, M. (1982). Analytical Biochemistry, 122, 358–393.

    Article  Google Scholar 

  14. Subramanian, Ch, Woo, J., Cai, X., Xu, X., Servick, S., Johnson, C. H., et al. (2006). The Plant Journal, 48, 138–152.

    Article  CAS  Google Scholar 

  15. Arai, R., Nakagawa, H., Kitayama, A., Ueda, H., & Nagamune, T. (2002). Journal of Bioscience and Bioengineering, 94, 362–364.

    CAS  Google Scholar 

  16. Ronaghi, M., Karamohamed, S., Petterson, B., Uhlen, M., & Nyren, P. (1996). Analytical Biochemistry, 242, 84–89.

    Article  CAS  Google Scholar 

  17. Frundzhyan, V., & Ugarova, N. (2007). Luminescence, 22, 241–244.

    Article  CAS  Google Scholar 

  18. Aycicek, H., Oguz, U., & Karci, K. (2006). International Journal of Hygiene and Environmental Health, 209, 203–206.

    Article  CAS  Google Scholar 

  19. Venkateswaran, K., Hattori, N. T., La Duc, M. T., & Kern, R. (2003). Journal of Microbiological Methods, 52, 367–377.

    Article  CAS  Google Scholar 

  20. Thompson, J. F., Hayes, L. S., & Lloyd, D. B. (1999). Gene, 103, 171–177.

    Article  Google Scholar 

  21. Goodman, S. D., & Gao, Q. (1999). Plasmid, 42, 154–157.

    Article  CAS  Google Scholar 

  22. Kricka, L. J. (2000). Methods in Enzymology, 305, 333–345.

    Article  CAS  Google Scholar 

  23. Kricka, L. J. (1988). Analytical Biochemistry, 175, 14–21.

    Article  CAS  Google Scholar 

  24. Ueda, I., Shinoda, F., & Kamaya, H. (1994). Biophysical Journal, 66, 2107–2110.

    Article  CAS  Google Scholar 

  25. Ford, S. R., & Leach, R. (1998). Methods in Molecular Biology, 102, 3–20.

    CAS  Google Scholar 

  26. Matsuk, H., Suzuki, A., Kamaya, H., & Ueda, I. (1999). Biochimica et Biophysica Acta, 1426, 143–150.

    Google Scholar 

  27. Kajiyama, N., & Nakano, E. (1993). Biochemistry, 32, 13795–13799.

    Article  CAS  Google Scholar 

  28. Kajiyama, N., & Nakano, E. (1994). Bioscience, Biotechnology, and Biochemistry, 58, 1170–1171.

    Article  CAS  Google Scholar 

  29. White, P. J., Squirrell, D. J., Arnaud, P., Love, C. R., & Murray, J. A. H. (1996). The Biochemical Journal, 319, 343–350.

    CAS  Google Scholar 

  30. Riahi Madvar, A., & Hosseinkhani, S. (2009). Protein Engineering, Design & Selection, 22, 655–663.

    Article  CAS  Google Scholar 

  31. Said Alipour, B., Hosseinkhani, S., Ardestani, S. K., & Moradi, A. (2009). Photochemical & Photobiological Sciences, 8, 847–855.

    Article  CAS  Google Scholar 

  32. Mehrabi, M., Hosseinkhani, S., & Ghobadi, S. (2008). International Journal of Biological Macromolecules, 43, 187–191.

    Article  CAS  Google Scholar 

  33. Eriksson, J., Nordstrom, T., & Nyren, P. (2003). Analytical Biochemistry, 314, 158–161.

    Article  CAS  Google Scholar 

  34. Ganjalikhany, M. R., Ranjbar, B., Hosseinkhani, S., & Hassani, L. (2009). Journal of Biological Catalyst B Enzyme, 62, 127–132.

    Article  Google Scholar 

  35. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  36. Wellner, N., Belton, P. S., & Tatham, A. S. (1996). The Biochemical Journal, 319, 741–747.

    CAS  Google Scholar 

  37. Dong, A., Huang, P., & Caughey, W. S. (1990). Biochemistry, 29, 3303–3308.

    Article  CAS  Google Scholar 

  38. Dong, A., & Caughey, W. S. (1994). Methods in Enzymology, 232, 139–175.

    Article  CAS  Google Scholar 

  39. Susi, H., & Byler, D. M. (1986). Methods in Enzymology, 130, 290–311.

    Article  CAS  Google Scholar 

  40. Byler, D. M., & Susi, H. (1986). Biopolymer, 25, 469–487.

    Article  CAS  Google Scholar 

  41. Kong, J., & YU, S. H. (2007). Acta Biochimica et Biophysica Sin, 39, 549–559.

    Article  CAS  Google Scholar 

  42. Deluca, M., & McElory, W. D. (1974). Biochemistry, 13, 9219–9225.

    Article  Google Scholar 

  43. Lemasters, J. J., & Hackenbrock, Ch R. (1997). Biochemistry, 16, 445–447.

    Article  Google Scholar 

  44. Emamzadeh, R., Hosseinkhani, S., Hemati, R., & Sadeghizadeh, M. (2010). Enzyme and Microbial Technology, 47, 159–165.

    Article  CAS  Google Scholar 

  45. Joly, M. (1965). A physicochemical approach to the denaturation of proteins. New York: Academic.

    Google Scholar 

  46. Hosseinkhani, S., & Nemat-Gorgani, M. (2003). Enzyme and Microbial Technology, 33, 179–184.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Research council of Tarbiat Modares University for providing financial support and Islamic Azad University, spectroscopy facility of Research and Science Branch for taking IR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saman Hosseinkhani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasouli, S., Hosseinkhani, S., Yaghmaei, P. et al. Effects of Sucrose and Trehalose on Stability, Kinetic Properties, and Thermal Aggregation of Firefly Luciferase. Appl Biochem Biotechnol 165, 572–582 (2011). https://doi.org/10.1007/s12010-011-9276-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9276-1

Keywords

Navigation