Skip to main content
Log in

Optimization of Human Granulocyte Macrophage-Colony Stimulating Factor (hGM-CSF) Expression Using Asparaginase and Xylanase Gene’s Signal Sequences in Escherichia coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The toxicity of the recombinant protein towards the expression host remains a significant deterrent for bioprocess development. In this study, the expression of human granulocyte macrophage-colony stimulating factor (hGM-CSF), which is known to be toxic to its host, was enhanced many folds using a combination of genetic and bioprocess strategies in Escherichia coli. The N terminus attachment of endoxylanase and asparaginase signal sequences from Bacillus subtilis and E. coli, respectively, in combination with and without His-tag, considerably improved expression levels. Induction and media optimization studies in shake flask cultures resulted in a maximal hGM-CSF concentration of 365 mg/L in the form of inclusion bodies (IBs) with a specific product yield (Y P/X) of 120 mg/g dry cell weight in case of the asparaginase signal. Culturing the cells in nutrient rich Terrific broth maintained the specific product yields (Y P/X) while a 6.6-fold higher volumetric concentration of both product and biomass was obtained. The purification and refolding steps were optimized resulting in a 95% pure protein with a fairly high refolding yield of 45%. The biological activity of the refolded protein was confirmed by a cell proliferation assay on hGM-CSF dependent human erythroleukemia TF-1 cells. This study demonstrated that this indeed is a viable route for the efficient production of hGM-CSF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wacker, M., Linton, D., Hitchen, P. G., Nita-Lazar, M., Haslam, S. M., North, S. J., et al. (2002). Science, 298, 1790–1793.

    Article  CAS  Google Scholar 

  2. Zhang, Z., Gildersleeve, J., Yang, Y. Y., Xu, R., Loo, J. A., Uryu, S., et al. (2004). Science, 303, 371–373.

    Article  CAS  Google Scholar 

  3. Zoonens, M., & Miroux, B. (2010). Method Molecular Biology, 601, 49–66.

    Article  CAS  Google Scholar 

  4. Makrides, S. C. (1996). Microbiological Reviews, 60, 512–538.

    CAS  Google Scholar 

  5. Hannig, G., & Makrides, S. C. (1998). Trends in Biotechnology, 16, 54–60.

    Article  CAS  Google Scholar 

  6. Bhattacharya, P., Pandey, G., Srivastava, P., & Mukherjee, K. J. (2005). Molecular Biotechnology, 30, 103–116.

    Article  CAS  Google Scholar 

  7. Bachmair, A., Finley, D., & Varshavsky, A. (1986). In vivo half-life of a protein is a function of its amino terminal residue. Science, 234, 179–186.

    Article  CAS  Google Scholar 

  8. Nygren, P. A., Stahl, S., & Uhlen, M. (1994). Engineering proteins to facilitate bioprocessing. Trends in Biotechnology, 12, 184–188.

    Article  CAS  Google Scholar 

  9. Ni, Y., & Chen, R. (2009). Biotechnological Letters, 31, 1661–1670.

    Article  CAS  Google Scholar 

  10. Yoon, S. H., Kim, S. K., & Kim, J. F. (2010). Recent Patents on Biotechnology, 4, 23–29.

    Article  CAS  Google Scholar 

  11. Gaofu, Q., Jie, L., Rongyue, C., Xin, Y., Dan, M., Jie, W., et al. (2005). Journal of Immunological Methods, 299, 9–19.

    Article  Google Scholar 

  12. Khushoo, A., Pal, Y., & Mukherjee, K. J. (2005). Applied Microbiology and Biotechnology, 68, 189–197.

    Article  CAS  Google Scholar 

  13. Choi, J. H., Jeong, K. J., Kim, S. C., & Lee, S. Y. (2000). Applied Microbiology and Biotechnology, 53, 640–645.

    Article  CAS  Google Scholar 

  14. Jeong, K. J., & Lee, S. Y. (2000). Biotechnology and Bioengineering, 67, 398–407.

    Article  CAS  Google Scholar 

  15. Jeong, K. J., & Lee, S. Y. (2001). Protein Expression and Purification, 23, 311–318.

    Article  CAS  Google Scholar 

  16. Metcalf, D. (1985). Science, 229, 16–22.

    Article  CAS  Google Scholar 

  17. Armitage, J. O. (1998). Blood, 92, 4491–4508.

    CAS  Google Scholar 

  18. Ling, M., Zou, M., Xu, M., Wang, J., & Ma, X. (1995). Chinese Journal of Biotechnology, 11, 157–62.

    CAS  Google Scholar 

  19. Schwanke, R. C., Renard, G., Chies, J. M., Campos, M. M., Junior, E. L., Santos, D. S., et al. (2009). International Journal of Biological Macromolecules, 45, 97–102.

    Article  CAS  Google Scholar 

  20. Berges, H., Joseph-Liauzun, E., & Fayet, O. (1996). Applied and Environmental Microbiology, 62, 55–60.

    CAS  Google Scholar 

  21. Srinivasa, B. K., Muthukumaran, T., Antony, A., Singh, P., Samuel, S. D., Balamurali, M., et al. (2009). Biotechnological Letters, 31, 659–664.

    Article  Google Scholar 

  22. Lee, J. H., Kim, N. S., Kwon, T. H., Jang, Y. S., & Yang, M. S. (2002). Journal of Biotechnology, 96, 205–211.

    Article  CAS  Google Scholar 

  23. Ryoo, Z. Y., Kim, M. O., Kim, K. E., Bahk, Y. Y., Lee, J. W., Park, S. H., et al. (2001). Transgenic Research, 10, 193–200.

    Article  CAS  Google Scholar 

  24. Au, L. C., Liu, T. J., Shen, H. D., Choo, K. B., & Wang, S. Y. (1996). Journal of Biotechnology, 51, 107–113.

    Article  CAS  Google Scholar 

  25. Tapryal, S., Khasa, Y. P., & Mukherjee, K. J. (2010). Biotechnology Journal, 5, 1078–1089.

    Article  CAS  Google Scholar 

  26. Srivastava, P., & Mukherjee, K. J. (2001). Preparative Biochemistry & Biotechnology, 31, 389–400.

    Article  CAS  Google Scholar 

  27. Kitamura, T., Tange, T., Terasawa, T., Chiba, S., Kuwaki, T., Miyagawa, K., et al. (1989). Journal of Cellular Physiology, 140, 323–334.

    Article  CAS  Google Scholar 

  28. Khushoo, A., Pal, Y., Singh, B. N., & Mukherjee, K. J. (2004). Protein Expression and Purification, 38, 29–36.

    Article  CAS  Google Scholar 

  29. Hua, Z., Jie, L., & Zhu, D. (1994). Biochemistry and Molecular Biology International, 34, 621–626.

    CAS  Google Scholar 

  30. Gnoth, S., Jenzsch, M., Simutis, R., & Lübbert, A. (2008). Bioprocess and Biosystems Engineering, 31, 41–46.

    Article  CAS  Google Scholar 

  31. Saida, F., Uzan, M., Odaert, B., & Bontems, F. (2006). Current Protein & Peptide Science, 7, 47–56.

    Article  CAS  Google Scholar 

  32. Panda, A. K. (2005). Method Molecular Biology, 308, 155–161.

    CAS  Google Scholar 

  33. Baneyx, F., & Mujacic, M. (2004). Nature Biotechnology, 22, 1399–1408.

    Article  CAS  Google Scholar 

  34. Jungbauer, A., & Kaar, W. (2007). Journal of Biotechnology, 128, 587–596.

    Article  CAS  Google Scholar 

  35. Belew, M., Zhou, Y., Wang, S., Nystrom, L. E., & Janson, J. C. (1994). Journal of Chromatography A, 679, 67–83.

    Article  CAS  Google Scholar 

  36. Yazdani, S. S., & Mukherjee, K. J. (2002). Bioprocess and Biosystems Engineering, 24, 341–346.

    Article  CAS  Google Scholar 

  37. Kayser, A., Weber, J., Hecht, V., & Rinas, U. (2005). Microbiology, 151, 693–706.

    Article  CAS  Google Scholar 

  38. Kopetzki, E., Schumacher, G., & Buckel, P. (1989). Molecular & General Genetics, 216, 149–155.

    Article  CAS  Google Scholar 

  39. Sorensen, S. J., Bailey, M., Hansen, L. H., Kroer, N., & Wuertz, S. (2005). Nature Reviews. Microbiology, 3, 700–710.

    Article  CAS  Google Scholar 

  40. Vethanayagam, J. G., & Flower, A. M. (2005). Microbial Cell Factories, 4, 3.

    Article  Google Scholar 

  41. Shiloach, J., & Fass, R. (2005). Biotechnology Advances, 23, 345–357.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are thankful to Prof. R. C. Kuhad, Department of Microbiology, University of Delhi South Campus, for his advice during the preparation of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khasa, Y.P., Khushoo, A., Tapryal, S. et al. Optimization of Human Granulocyte Macrophage-Colony Stimulating Factor (hGM-CSF) Expression Using Asparaginase and Xylanase Gene’s Signal Sequences in Escherichia coli . Appl Biochem Biotechnol 165, 523–537 (2011). https://doi.org/10.1007/s12010-011-9272-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9272-5

Keywords

Navigation