Skip to main content

Advertisement

Log in

Effects of Preparation Method on the Performance of Ni/Al2O3 Catalysts for Hydrogen Production by Bio-Oil Steam Reforming

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Steam reforming of bio-oil derived from the fast pyrolysis of biomass is an economic and renewable process for hydrogen production. The main objective of the present work has been to investigate the effects of the preparation method of Ni/Al2O3 catalysts on their performance in hydrogen production by bio-oil steam reforming. The Ni/Al2O3 catalysts were prepared by impregnation, co-precipitation, and sol–gel methods. XRD, XPS, H2-TPR, SEM, TEM, TG, and N2 physisorption measurements were performed to characterize the texture and structure of the catalysts obtained after calcination and after their subsequent use. Ethanol and bio-oil model compound were selected for steam reforming to evaluate the catalyst performance. The catalyst prepared by the co-precipitation method was found to display better performance than the other two. Under the optimized reaction conditions, an ethanol conversion of 99% and a H2 yield of 88% were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bridgwater, A. V., & Peacocke, G. V. C. (2000). Renewable & Sustainable Energy Reviews, 4, 1–73.

    Article  CAS  Google Scholar 

  2. Huber, G. W., Iborra, S., & Corma, A. (2008). Chemical Reviews, 106, 4044–4098.

    Article  Google Scholar 

  3. Czernik, S., & Bridgwater, A. V. (2004). Energy Fuels, 18, 590–598.

    Article  CAS  Google Scholar 

  4. Xiong, W., Fu, Y., Lai, D., & Guo, Q. (2009). Chemical Journal of Chinese Universities, 30, 1754–1758.

    CAS  Google Scholar 

  5. Wang, D., Montané, D., & Chornet, E. (1996). Applied Catalysis. A, General, 143, 245–270.

    Article  CAS  Google Scholar 

  6. Wang, D., Czernik, S., Montané, D., Mann, M., & Chornet, E. (1997). Industrial and Engineering Chemistry Research, 36, 1507–1518.

    Article  CAS  Google Scholar 

  7. Wang, D., Czernik, S., & Chornet, E. (1998). Energy and Fuels, 12, 19–24.

    Article  Google Scholar 

  8. Garcia, L., French, R., Czernik, S., & Chornet, E. (2000). Applied Catalysis. A, General, 201, 225–239.

    Article  CAS  Google Scholar 

  9. Czernik, S., Evans, R., & French, R. (2007). Catalysis Today, 129, 265–268.

    Article  CAS  Google Scholar 

  10. Wu, C., Huang, Q., Sui, M., Yan, Y., & Wang, F. (2008). Fuel Processing Technology, 89, 1306–1316.

    Article  CAS  Google Scholar 

  11. Yuan, L., Chen, Y., Song, C., Ye, T., Guo, Q., Zhu, Q., et al. (2008). Chemical Communications, 41, 5215–5217.

    Article  Google Scholar 

  12. Rioche, C., Kulkarni, S., Meunier, F. C., Breen, J. P., & Burch, R. (2005). Applied Catalysis. B, Environmental, 61, 130–139.

    Article  CAS  Google Scholar 

  13. Wen, G., Xu, Y., & Xu, Z. (2009). Catalysis Letters, 129, 250–257.

    Article  CAS  Google Scholar 

  14. Akande, A. J., Idem, R. O., & Dalai, A. K. (2005). Applied Catalysis. A, General, 287, 159–175.

    Article  CAS  Google Scholar 

  15. Fajardo, H. V., & Probst, L. F. D. (2006). Applied Catalysis A: General, 306, 134–141.

    Article  CAS  Google Scholar 

  16. Zhang, L., Wang, X., Tan, B., & Ozkan, U. S. (2009). Journal of Molecular Catalysis A: Chemistry, 297, 26–34.

    Article  CAS  Google Scholar 

  17. Seo, J. G., Youn, M. H., Jung, J. C., & Song, I. K. (2009). International Journal of Hydrogen Energy, 34, 5409–5416.

    Article  CAS  Google Scholar 

  18. Fan, J., Boettcher, S. W., & Stucky, G. D. (2006). Chemistry of Materials, 18, 6391–6396.

    Article  CAS  Google Scholar 

  19. Hoste, S., Van De Vondel, D., & Van Der Kelen, G. P. (1979). Journal of Electron Spectroscopy and Related Phenomena, 16, 407–413.

    Article  CAS  Google Scholar 

  20. Hou, Z., Yokota, O., Tanaka, T., & Yashima, T. (2003). Applied Catalysis. A, General, 253, 381–387.

    Article  CAS  Google Scholar 

  21. Comas, J., Mariño, F., Laborde, M., & Amadeo, N. (2004). Chemical Engineering Journal, 98, 61–68.

    Article  CAS  Google Scholar 

  22. Breen, J. P., Burch, R., & Coleman, H. M. (2002). Applied Catalysis. B, Environmental, 39, 65–74.

    Article  CAS  Google Scholar 

  23. Goula, M. A., Kontou, S. K., & Tsiakaras, P. E. (2004). Applied Catalysis. B, Environmental, 49, 135–144.

    Article  CAS  Google Scholar 

  24. Li, M., Wang, X., Li, S., Wang, S., & Ma, X. (2010). International Journal of Hydrogen Energy, 35, 6699–6708.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the Doctoral Foundation of the Ministry of Education of China (20090101110034), the International Science and Technology Cooperation Program (2009DFA61050), the National High Technology Research and Development Program of China (2009AA05Z407), and the National Basic Research Program of China (2007CB210200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shurong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Wang, S., Cai, Q. et al. Effects of Preparation Method on the Performance of Ni/Al2O3 Catalysts for Hydrogen Production by Bio-Oil Steam Reforming. Appl Biochem Biotechnol 168, 10–20 (2012). https://doi.org/10.1007/s12010-011-9269-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9269-0

Keywords

Navigation