Skip to main content
Log in

Studies on Silver Accumulation and Nanoparticle Synthesis By Cochliobolus lunatus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Development of reliable and eco-friendly processes for synthesis of metallic nanoparticles is an important step in the field of application of nanotechnology. Biological systems provide a useful option to achieve this objective. In this study, potent fungal strain was selectively isolated from soil samples on silver supplemented medium, followed by silver tolerance (100–1,000 ppm) test. The isolated fungus was subjected to morphological, 18S rRNA gene sequencing and phylogenic studies and confirmed as Cochliobolus lunatus. The silver accumulation and nanoparticle formation potential of wet cell mass of C. lunatus was investigated. The accumulation and nanoparticle formation by wet fungal cell mass with respect to pH change was also studied. The desorbing assay was used to recover accumulated silver from cell mass. C. lunatus was found to produce optimum biomass (0.94 g%) at 635 ppm of silver. Atomic absorption spectroscopy study showed that at optimum pH (6.5 ± 0.2), cell mass accumulates 55.6% of 100 ppm silver. SEM and FTIR studies revealed that the cell wall of C. lunatus is the site of silver sorption, and certain organic groups such as carbonyl, carboxyl, and secondary amines in the fungal cell wall have an important role in biosorption of silver in nanoform. XRD determined the FCC crystalline nature of silver nanoparticles. TEM analysis established the shape of the silver nanoparticles to be spherical with the presence of very small-sized nanoparticles. Average size of silver nanoparticles (14 nm) was confirmed by particle sizing system. This study reports the synthesis and accumulation of silver nanoparticles through reduction of Ag+ ions by the wet cell mass of fungus C. lunatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Smith, I. C., & Carson, B. L. (1977). Trace metals in the environment, vol 2—silver. Ann Arbor: Ann Arbor Science.

    Google Scholar 

  2. Petering, H. G. (1984). Silber. In E. Merian (Ed.), Metalle in derUmwelt, Verteilung, Analytik und biologische Relevanz (pp. 555–560). Weinheim: Verlag.

    Google Scholar 

  3. Rouch, D. A., Lee, B. T., & Morby, A. P. (1995). Journal of Industrial Microbiology, 14, 132–141.

    Article  CAS  Google Scholar 

  4. Silver, S. (1996). Gene, 179, 9–19.

    Article  CAS  Google Scholar 

  5. Beveridge, J. T., Hughes, M. N., Lee, H. K. T., Poole, R. K., Savvaidis, I., Silver, S., et al. (1997). Advances in Microbial Physiology, 38, 178–243.

    Google Scholar 

  6. Pethkar, A. V., & Paknikar, K. M. (2003). Process Biochemistry, 38, 855–860.

    Article  CAS  Google Scholar 

  7. Chen, J. P., & Lim, L. L. (2002). Chemosphere, 49, 363–370.

    Article  CAS  Google Scholar 

  8. Pollet, B., Lorimer, J. P., Phull, S. S., & Hihn, J. Y. (2000). Ultrasonics Sonochemistry, 7(2), 69.

    Article  CAS  Google Scholar 

  9. Ajiwe, V. I. E., & Anyadiegwu, I. E. (2000). Separation and Purification Technology, 18, 89–92.

    Article  CAS  Google Scholar 

  10. Adani, K. G., Barley, R. W., & Pascoe, R. D. (2005). Mineral Engineering, 18, 1269–1276.

    Article  CAS  Google Scholar 

  11. Othman, N., Mat, H., & Goto, M. (2006). Journal of Membrane Science, 282, 171–177.

    Article  CAS  Google Scholar 

  12. Zhang, H., Li, Q., Wang, H., Sun, D., Lu, Y., & He, N. (2007). Applied Biochemistry and Biotechnology, 143, 54–62. doi:10.1007/s12010-007-8006-1.

    Article  CAS  Google Scholar 

  13. Merroun, M. L., BenOmar, N., Alonso, E., Arias, J. M., & Gonzalez-Munoz, M. T. (2001). Geomicrobiology, 18, 183–192.

    CAS  Google Scholar 

  14. Dias, M. A., Lacerda, I. C. A., Pimentel, P. F., DeCastro, H. F., & Rosa, C. A. (2002). Letters in Applied Microbiology, 34, 46–50.

    Article  CAS  Google Scholar 

  15. Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., et al. (2001). Angewandte Chemie. International Edition, 40, 3585–3588.

    Article  CAS  Google Scholar 

  16. Pighi, L., Pumpel, T., & Schinner, F. (1989). Biotechnology Letters, 11, 275–280.

    Article  CAS  Google Scholar 

  17. Chen, J. C., Lin, Z. H., & Ma, X. X. (2003). Letters in Applied Microbiology, 37, 105–108.

    Article  CAS  Google Scholar 

  18. Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., et al. (2003). Colloids and Surfaces. B: Biointerfaces, 28, 313.

    Article  CAS  Google Scholar 

  19. Bhainsa, K. C., & D’Souza, S. F. (2006). Colloids and Surfaces. B: Biointerfaces, 47, 160–164.

    Article  CAS  Google Scholar 

  20. Vigneshwaran, N., Kathe, A. A., Varadrajan, P. V., Nachane, R. P., & Balasubramanya, R. H. (2006). Collides & Surfaces B: Biointerfaces, 53, 55–59.

    Article  CAS  Google Scholar 

  21. Vigneshwaran, N., Ashtaputre, N. M., Varadarajan, P. V., Nachane, R. P., Paralikar, K. M., & Balasubramanya, R. H. (2007). Materials Letters, 61, 1413–1418.

    Article  CAS  Google Scholar 

  22. Ingle, A., Rai, M., Gade, A., & Bawaskar, M. (2008). Journal of Nanoparticle Research. doi:10.1007/s11051-008-9573-y.

    Google Scholar 

  23. Vitas, M., Smith, K., Rozman, D., & Komel, R. (1994). Journal of Steroid Biochemistry and Molecular Biology, 49, 87–92.

    Article  CAS  Google Scholar 

  24. Padua, R. M., Oliveira, A. B., Filho, J. D., Takahashi, J. A., Silva, M. A., & Braga, F. C. (2007). Journal of the Brazilian Chemical Society, 18(7), 1303–1310.

    Article  CAS  Google Scholar 

  25. White, T. J., Bruns, T., Lee, S., & Talor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications, (pp. 315–322). San Diego: Academic.

  26. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  27. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., et al. (2007). Bioinformatics, 23, 2947–2948.

    Article  CAS  Google Scholar 

  28. Xia, X., & Xie, Z. (2001). The Journal of Heredity, 92, 371–373.

    Article  CAS  Google Scholar 

  29. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  30. Kathiresan, K., Manivannan, S., Nabeel, M. A., & Dhivya, B. (2009). Colloids and Surfaces. B: Biointerfaces, 71, 133–137.

    Article  CAS  Google Scholar 

  31. Vigneshwaran, N., Kathe, A. A., Varadrajan, P. V., Nachane, R. P., & Balasubramanya, R. H. (2007). Langmuir, 23, 7113–7117.

    Article  CAS  Google Scholar 

  32. Morones, J. R., Elechiguerra, J. L., Camacho, A., & Ramirez, J. T. (2005). Nanotechnology, 16, 2346–2353.

    Article  CAS  Google Scholar 

  33. Pal, S., Tak, Y. K., & Song, J. M. (2007). Applied and Environmental Microbiology, 27(6), 1712–1720.

    Article  Google Scholar 

  34. Pethkar, A. V., Kulkarni, S. K., & Paknikar, K. M. (2000). Bioresource Technology, 80, 211–215.

    Article  Google Scholar 

  35. Singh, A. K., Talat, M., Singh, D. P., & Srivastava, O. N. (2010). Journal of Nanoparticle Research, 12, 1667–1675.

    Article  CAS  Google Scholar 

  36. Vaidyanathan, R., Shubaash, G., Kalimuthu, K., Venkataraman, D., Sureshbabu, R. K. P., & Sangiliyandi, G. (2009). Colloids and Surfaces B: Biointerfaces. doi:10.1016/j.colsurfb.2009.09.006.

    Google Scholar 

  37. Naik, R. R., Stringer, S. J., Agarwal, G., Jones, S. E., & Stone, M. O. (2002). Nature Materials, 1, 169–172.

    Article  CAS  Google Scholar 

  38. Shahverdi, A. R., Fakhimi, A., Shahverdi, H. R., & Minaian, S. (2007). Nanomedicine: Nanotechnology, Biology, and Medicine. doi:10.1016/j.nano.2007.02.001.

    Google Scholar 

  39. Duran, N., Marcato, P. D., Alves, O. L., De Souza, G. H., Esposito, E. (2005). Journal of Nanobiotechnology 3, 8.

  40. Bell, A. A., Wheeler, M. H., Liu, J. G., & Stipanovic, R. D. (2003). Pest Management Science, 59, 736–747.

    Article  CAS  Google Scholar 

  41. Baker, R. A., & Tatum, J. H. (1998). Journal of Fermentation and Bioengineering, 85, 359–361.

    Article  CAS  Google Scholar 

  42. Newman, D. K., & Kolter, R. (2000). Nature, 405, 94–97.

    Article  CAS  Google Scholar 

  43. Campos, F. F., Rosa, L. H., Cota, B. B., Caligiorne, R. B., Rabello, A. L., Almeida Alves, T. L., et al. (2008). PLOS Neglected Tropical Diseases, 2(12), e348.

    Article  Google Scholar 

  44. Medentsev, A. G., & Alimenko, V. K. (1998). Phytochemistry, 47, 935–959.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We would like to express our gratitude to Dr. N. Vigneshwaran, Sr. Scientist, CIRCOT, Mumbai for his useful advice and support and Prof. P. P. Patil, Director, School of Physical Sciences, North Maharashtra University, Jalgaon for analytical improvement of manuscript and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish V. Patil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salunkhe, R.B., Patil, S.V., Salunke, B.K. et al. Studies on Silver Accumulation and Nanoparticle Synthesis By Cochliobolus lunatus . Appl Biochem Biotechnol 165, 221–234 (2011). https://doi.org/10.1007/s12010-011-9245-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9245-8

Keywords

Navigation