Skip to main content
Log in

Production of Lipids Containing High Levels of Docosahexaenoic Acid by a Newly Isolated Microalga, Aurantiochytrium sp. KRS101

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the present study, a novel oleaginous Thraustochytrid containing a high content of docosahexaenoic acid (DHA) was isolated from a mangrove ecosystem in Malaysia. The strain identified as an Aurantiochytrium sp. by 18S rRNA sequencing and named KRS101 used various carbon and nitrogen sources, indicating metabolic versatility. Optimal culture conditions, thus maximizing cell growth, and high levels of lipid and DHA production, were attained using glucose (60 g l−1) as carbon source, corn steep solid (10 g l−1) as nitrogen source, and sea salt (15 g l−1). The highest biomass, lipid, and DHA production of KRS101 upon fed-batch fermentation were 50.2 g l−1 (16.7 g l−1 day−1), 21.8 g l−1 (44% DCW), and 8.8 g l−1 (40% TFA), respectively. Similar values were obtained when a cheap substrate like molasses, rather than glucose, was used as the carbon source (DCW of 52.44 g l−1, lipid and DHA levels of 20.2 and 8.83 g l−1, respectively), indicating that production of microbial oils containing high levels of DHA can be produced economically when the novel strain is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Beopoulos, A., Cescut, J., Haddouche, R., et al. (2009). Prog Lipid Research, 48, 375–387.

    Article  CAS  Google Scholar 

  2. Economou, C. N., Makri, A., Aggelis, G., et al. (2010). Bioresource Tech, 101, 1385–1388.

    Article  CAS  Google Scholar 

  3. Zhu, L. Y., Zong, M. H., & Wu, H. (2008). Bioresource Tech, 99, 7881–7885.

    Article  CAS  Google Scholar 

  4. Li, Q., Du, W., & Liu, D. (2008). Applied Microbiology and Biotechnology, 80, 749–756.

    Article  CAS  Google Scholar 

  5. Easterling, E. R., French, W. T., Hernandez, R., et al. (2009). Bioresource Tech, 100, 356–361.

    Article  CAS  Google Scholar 

  6. Hu, C., Zhao, X., Zhao, J., et al. (2009). Bioresource Tech, 100, 4843–4847.

    Article  CAS  Google Scholar 

  7. Li, Y., Zhao, Z., & Bai, F. (2007). Enz Microbial Tech, 41, 312–317.

    Article  Google Scholar 

  8. Mona, K. G., Sanaa, H. O., & Linda, M. A. (2008). World Journal of Microbiology & Biotechnology, 24, 1703–1711.

    Article  Google Scholar 

  9. Xu, H., Miao, X., & Wu, Q. (2006). Journal of Biotechnology, 126, 499–507.

    Article  CAS  Google Scholar 

  10. Yokochi, T., Honda, D., Higashihara, T., et al. (1998). Applied Microbiology and Biotechnology, 49, 72–76.

    Article  CAS  Google Scholar 

  11. Seraphim, P., Michael, K., & George, A. (2004). Bioresource Tech, 95, 287–291.

    Article  Google Scholar 

  12. Gouda, M. K., Omar, S. H., & Aouad, L. M. (2008). World Journal of Microbiology & Biotechnology, 24, 1703–1711.

    Article  CAS  Google Scholar 

  13. Lauritzen, L., Hansen, H. S., Jorgensen, M. H., et al. (2001). Prog Lipid Research, 40, 1–94.

    Article  CAS  Google Scholar 

  14. Abbey, M., Clifton, P., Kestin, et al. (1990). Arteriosclerosis, 10, 85–94.

    CAS  Google Scholar 

  15. Angerer, P., & Schachy, C. V. (2000). Curr Opin Clin Nutri Meta Care, 3, 439–445.

    Article  CAS  Google Scholar 

  16. Braden, L. M., & Caroll, K. K. (1986). Lipids, 21, 285–288.

    Article  CAS  Google Scholar 

  17. Burja, A. M., Radianingtyas, H., Windust, A., et al. (2006). Applied Microbiology and Biotechnology, 72, 1161–1169.

    Article  CAS  Google Scholar 

  18. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Nucleic Acids Research, 22, 4673–4680.

    Article  CAS  Google Scholar 

  19. Kimura, M. A. (1980). Journal of Molecular Evolution, 16, 111–120.

    Article  CAS  Google Scholar 

  20. Chi, Z., Pyle, D., Wen, Z., et al. (2007). Process Biochemistry, 42, 1537–1545.

    Article  CAS  Google Scholar 

  21. Millier, G. L. (1959). Analytical Chemistry, 31, 426–429.

    Article  Google Scholar 

  22. Lewis, T., Nichols, P. D., & McMeekin, T. A. (2000). J Microbiol Methods, 3, 107–116.

    Article  Google Scholar 

  23. De Swaaf, M. E., Sijtsma, L., & Pronk, J. T. (2003). Biotech Bioeng, 81, 666–672.

    Article  Google Scholar 

  24. Iida, I., Nakahara, T., Yokochi, T., et al. (1996). J Fermen Bioeng, 81, 76–78.

    Article  CAS  Google Scholar 

  25. Huey-Lang, Y., Lu, C. K., Chen, S. F., et al. (2010). Marine Biotechnology, 12, 173–185.

    Article  Google Scholar 

  26. Perveen, Z., Ando, H., Ueno, A., et al. (2006). Biotechnological Letters, 28, 197–202.

    Article  CAS  Google Scholar 

  27. Chi, Z., Liu, Y., Frear, Cl, et al. (2009). Applied Microbiology and Biotechnology, 81, 1141–1148.

    Article  CAS  Google Scholar 

  28. Lu-Jing, R., Huang, H., Xiao, A. H., et al. (2009). Bioprocess and Biosystems Engineering, 32, 837–843.

    Article  Google Scholar 

  29. Nagano, N., Taoka, Y., Honda, D., et al. (2009). Journal of Oleo Science, 58, 623–628.

    Article  CAS  Google Scholar 

  30. Rosa, S. M., Soria, M. A., Velez, C. G., et al. (2010). Bioresource Tech, 101, 2367–2374.

    Article  CAS  Google Scholar 

  31. Yang, H. L., Lu, C. K., Chen, S. F., et al. (2010). Marine Biotechnology, 12, 173–185.

    Article  CAS  Google Scholar 

  32. Davery, A., & Pakshirajan, K. (2009). Applied Biochemistry and Biotechnology, 158, 663–674.

    Article  Google Scholar 

  33. Jung, H. I., Lee, O. M., Jeong, J. H., et al. (2010). Applied Biochemistry and Biotechnology, 162, 486–497.

    Article  CAS  Google Scholar 

  34. Zhu, L. Y., Zong, M. H., & Wu, H. (2008). Bioresource Tech, 99, 788–785.

    Google Scholar 

Download references

Acknowledgment

This study was supported by the Ministry of Education, Science and Technology, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Woo Seo.

Additional information

Won-Kyung Hong and Dina Rairakhwada are co-first authors and contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, WK., Rairakhwada, D., Seo, PS. et al. Production of Lipids Containing High Levels of Docosahexaenoic Acid by a Newly Isolated Microalga, Aurantiochytrium sp. KRS101. Appl Biochem Biotechnol 164, 1468–1480 (2011). https://doi.org/10.1007/s12010-011-9227-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9227-x

Keywords

Navigation