Skip to main content
Log in

A Novel Glutamate Transport System in Poly(γ-Glutamic Acid)-Producing Strain Bacillus subtilis CGMCC 0833

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacillus subtilis CGMCC 0833 is a poly(γ-glutamic acid) (γ-PGA)-producing strain. It has the capacity to tolerate high concentration of extracellular glutamate and to utilize glutamate actively. Such a high uptake capacity was owing to an active transport system for glutamate. Therefore, a specific transport system for l-glutamate has been observed in this strain. It was a novel transport process in which glutamate was symported with at least two protons, and an inward-directed sodium gradient had no stimulatory effect on it. K m and V m for glutamate transport were estimated to be 67 μM and 152 nmol−1 min−1 mg−1 of protein, respectively. The transport system showed structural specificity and stereospecificity and was strongly dependent on extracellular pH. Moreover, it could be stimulated by Mg2+, NH +4 , and Ca2+. In addition, the glutamate transporter in this strain was studied at the molecular level. As there was no important mutation of the transporter protein, it appeared that the differences of glutamate transporter properties between this strain and other B. subtilis strains were not due to the differences of the amino acid sequence and the structure of transporter protein. This is the first extensive report on the properties of glutamate transport system in γ-PGA-producing strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

γ-PGA:

Poly(γ-glutamic acid)

∆p:

Proton motive force

∆pNa:

Sodium gradient

∆pH:

Transmembrane proton gradient

∆Ψ:

Transmembrane electrical potential

References

  1. Shih, I. L., & Van, Y. T. (2001). Bioresource Technology, 79, 207–225.

    Article  CAS  Google Scholar 

  2. Sung, M. H., Park, C., Kim, C. J., Poo, H., Soda, K., & Ashiuchi, M. (2005). Chemical Record, 5, 352–366.

    Article  CAS  Google Scholar 

  3. Xu, H., Jiang, M., Li, H., Lu, D., & Ouyang, P. (2005). Process Biochemistry, 40, 519–523.

    Article  CAS  Google Scholar 

  4. Wu, Q., Xu, H., Xu, L., & Ouyang, P. (2006). Process Biochemistry, 41, 1650–1655.

    Article  CAS  Google Scholar 

  5. Shi, N., Xu, H., Yao, J., & Wang, J. (2007). The Chinese Journal of Process Engineering, 7, 145–148.

    CAS  Google Scholar 

  6. Birrer, G. A., Cromwick, A., & Gross, R. A. (1994). International Journal of Biological Macromolecules, 16, 265–275.

    Article  CAS  Google Scholar 

  7. Cromwick, A. M., & Gross, R. A. (1995). International Journal of Biological Macromolecules, 17, 259–267.

    Article  CAS  Google Scholar 

  8. Ko, Y. H., & Gross, R. A. (1998). Biotechnology and Bioengineering, 57, 430–437.

    Article  CAS  Google Scholar 

  9. Kunioka, M. (1995). Applied Microbiology and Biotechnology, 44, 501–506.

    Article  CAS  Google Scholar 

  10. Jung, H., Pirch, T., & Hilger, D. (2006). Journal of Membrane Biology, 213, 119–133.

    Article  CAS  Google Scholar 

  11. Veenhoff, L. M., Heuberger, E. H. M. L., & Poolman, B. (2002). Trends in Biochemical Sciences, 27, 242–249.

    Article  CAS  Google Scholar 

  12. de Vrij, W., Bulthuis, R. A., van Iwaarden, P. R., & Konings, W. N. (1989). Journal of Bacteriology, 171, 1118–1125.

    Google Scholar 

  13. Peddie, C. J., Cook, G. M., & Morgan, H. W. (1999). Journal of Bacteriology, 181, 3172–3177.

    CAS  Google Scholar 

  14. Tolner, B., Poolman, B., & Konings, W. N. (1992). Molecular Microbiology, 6, 2845–2856.

    Article  CAS  Google Scholar 

  15. Heyne, R. I. R., de Vrij, W., Crielaard, W., & Konings, W. N. (1991). Journal of Bacteriology, 173, 791–800.

    CAS  Google Scholar 

  16. Tolner, B., Ubbink-kok, T., Poolman, B., & Konings, W. N. (1995). Journal of Bacteriology, 177, 2863–2869.

    CAS  Google Scholar 

  17. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  18. Konings, W. N., Bisschop, A., & Daatselaar, M. C. C. (1972). FEBS Letters, 24, 260–264.

    Article  CAS  Google Scholar 

  19. Goto, A., & Kunioka, M. (1992). Bioscience, Biotechnology, and Biochemistry, 56, 1031–1035.

    Article  CAS  Google Scholar 

  20. Jacobs, M. H. J., Driessen, A. J. M., & Konings, W. N. (1995). Journal of Bacteriology, 177, 1812–1816.

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Basic Research Program of China (973 Program, 2007CB714304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Q., Xu, H., Zhang, D. et al. A Novel Glutamate Transport System in Poly(γ-Glutamic Acid)-Producing Strain Bacillus subtilis CGMCC 0833. Appl Biochem Biotechnol 164, 1431–1443 (2011). https://doi.org/10.1007/s12010-011-9223-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9223-1

Keywords

Navigation