Skip to main content
Log in

d(−)-Lactic Acid Production by Leuconostoc mesenteroides B512 Using Different Carbon and Nitrogen Sources

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sugar concentration from sugarcane juice and yeast autolysate increased lactic acid production more than the other agro-industrial substrates tested. The concentrations of these two components were further optimized using the Plackett–Burman design and response surface method. A second-order polynomial regression model estimated that a maximal lactic acid production of 66.11 g/L would be obtained when the optimal values of sugar and yeast autolysate were 116.9 and 44.25 g/L, respectively. To validate the optimization of the medium composition, studies were carried out using the optimized conditions to confirm the result of the response surface analysis. After 48 h, lactic acid production using the shake-flask method was at 60.2 g/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ohara, H. (2003). Applied Microbiology and Biotechnology, 62, 474–477.

    Article  CAS  Google Scholar 

  2. Di Lorenzo, M. L. (2005). European Polymer Journal, 41, 569–575.

    Article  Google Scholar 

  3. Ryu, H. W., Yun, J. S., Wee, Y. J. (2003), In A. Pandey (ed.), Concise encyclopedia of bioresource technology, lactic acid (p. 635). New York: The Haworth Press.

  4. Lipinsky, E. S., & Sinclair, L. G. (1986). Chemical Engineering Progress, 82, 26–32.

    CAS  Google Scholar 

  5. Hofvendahl, K., & Hahn-Hägerdal, B. (1997). Enzyme and Microbial Technology, 20, 301–307.

    Article  CAS  Google Scholar 

  6. Ikada, Y., Jamshidi, K., Tsuji, H., & Hyon, S. H. (1987). Macromolecules, 20, 904–906.

    Article  CAS  Google Scholar 

  7. Tsuji, H., Hyon, S. H., & Ikada, Y. (1991). Macromolecules, 24, 5651–5656.

    Article  CAS  Google Scholar 

  8. Fitzpatrick, J. J., & Keeffe, U. O. (2001). Process Biochemistry, 37, 183–186.

    Article  CAS  Google Scholar 

  9. Tejayadi, S., & Cheryan, M. (1995). Applied Microbiology and Biotechnology, 43, 242–248.

    Article  CAS  Google Scholar 

  10. Calabia, B. P., & Tokiwa, Y. (2007). Biotechnological Letters, 29, 1329–1332.

    Article  CAS  Google Scholar 

  11. Dumbrepatil, A., Adsul, M., Chaudhari, S., Khire, J., & Gokhale, D. (2008). Applied and Environmental Microbiology, 74, 333–335.

    Article  CAS  Google Scholar 

  12. Coelho, L. F., De Lima, C. J. B., Bernardo, M. P., Alvarez, G. M., & Contiero, J. (2010). Journal of the Science of Food and Agriculture, 90, 1944–1950.

    CAS  Google Scholar 

  13. Buyukkileci, A. O., & Harsa, S. (2004). Journal of Chemical Technology and Biotechnology, 79, 1036–1040.

    Article  CAS  Google Scholar 

  14. Yu, L., Lei, T., Ren, X., Pei, X., & Feng, X. (2008). Biochemical Engineering Journal, 39, 496–502.

    Article  CAS  Google Scholar 

  15. De Lima, C. J. B., Coelho, L. F., Blanco, K. C., & Contiero, J. (2009). African Journal of Biotechnology, 8, 5842–5846.

    Google Scholar 

  16. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  17. Timbuntam, W., Sriroth, K., & Tokiwa, Y. (2006). Biotechnological Letters, 28, 811–814.

    Article  CAS  Google Scholar 

  18. Vahvaselka, M. I., Linko, P. (1987). In O. M. Neijssel, R. R. Van der Meer and K. Ch A. M. Luyben (Eds.), Proceedings of the 4th European congress on biotechnology, n. 3, vol. 123: Lactic acid fermentation in milk ultrafiltrate by Lactobacillus helveticus (pp. 317–320). Amsterdam: Elsevier Science BV.

  19. Cox, G. C., & Macbean, R. D. (1977). Australian Journal of Dairy Technology, 32, 19–22.

    CAS  Google Scholar 

  20. Hurok, O. H., Wee, W. J., Yun, J. S., Han, S. H., Jung, S., & Ryu, H. W. (2005). Bioresource Technology, 96, 1492–1498.

    Article  Google Scholar 

  21. Naveena, B. J., Altaf, M. D., Bhadriah, K., & Reddy, G. (2005). Bioresource Technology, 96, 485–490.

    Article  CAS  Google Scholar 

  22. Honorato, T. L., Rabelo, M. C., Pinto, G. A. S., & Rodrigues, S. (2007). Ciencia y Tecnologia Alimentaria, 27, 254–258.

    Article  CAS  Google Scholar 

  23. Wood, B. J. B., & Holzapfel, W. H. (1995). The genera of lactic acid bacteria (1st ed.). Glasgow: Blackie Academic and Professional.

    Google Scholar 

  24. Pritchard, G., & Coolbear, T. (1993). FEMS Microbiology, 12, 179–206.

    Article  CAS  Google Scholar 

  25. Sule, B., Elibol, M., & Ozer, D. (2004). Biochemical Engineering Journal, 21, 33–37.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Tavolaro Dairy and Corn Products for kindly supplying the whey and corn steep liquor, respectively, the Sta. Lucia plant for supplying sugarcane molasses and sugarcane juice, the Brazilian fostering agency São Paulo Research Foundation—FAPESP, and the National Council for Scientific and Technological Development (CNPq) for the fellowships and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Contiero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coelho, L.F., de Lima, C.J.B., Bernardo, M.P. et al. d(−)-Lactic Acid Production by Leuconostoc mesenteroides B512 Using Different Carbon and Nitrogen Sources. Appl Biochem Biotechnol 164, 1160–1171 (2011). https://doi.org/10.1007/s12010-011-9202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9202-6

Keywords

Navigation