Skip to main content
Log in

Study on the Decreased Sugar Yield in Enzymatic Hydrolysis of Cellulosic Substrate at High Solid Loading

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Current technology for conversion of biomass to ethanol is an enzyme-based biochemical process. In bioethanol production, achieving high sugar yield at high solid loading in enzymatic hydrolysis step is important from both technical and economic viewpoints. Enzymatic hydrolysis of cellulosic substrates is affected by many parameters, including an unexplained behavior that the glucan digestibility of substrates by cellulase decreased under high solid loadings. A comprehensive study was conducted to investigate this phenomenon by using Spezyme CP and Avicel as model cellulase and cellulose substrate, respectively. The hydrolytic properties of the cellulase under different substrate concentrations at a fixed enzyme-to-substrate ratio were characterized. The results indicate that decreased sugar yield is neither due to the loss of enzyme activity at a high substrate concentration nor due to the higher end-product inhibition. The cellulase adsorption kinetics and isotherm studies indicated that a decline in the binding capacity of cellulase may explain the long-observed but little-understood phenomenon of a lower substrate digestibility with increased substrate concentration. The mechanism how the enzyme adsorption properties changed at high substrate concentration was also discussed in the context of exploring the improvement of the cellulase-binding capacity at high substrate loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., et al. (2007). Science, 315, 804–807.

    Article  CAS  Google Scholar 

  2. Van, D. B. (1972). Ph.D dissertation. Massachusetts Institute of Technology.

  3. Howell, J., & Stuck, J. (1975). Biotechnology and Bioengineering, 17, 873–893.

    Article  CAS  Google Scholar 

  4. Liaw, E. T., & Penner, M. H. (1990). Applied and Environmental Microbiology, 56, 2311–2318.

    CAS  Google Scholar 

  5. Lee, Y. H., & Fan, L. T. (1982). Biotechnology and Bioengineering, 24, 2383–2406.

    Article  CAS  Google Scholar 

  6. Ryu, D. D. Y., & Lee, S. B. (1986). Chemical Engineering Communications, 45, 119–134.

    Article  CAS  Google Scholar 

  7. Huang, X. L., & Penner, M. H. (1991). Journal of Agricultural and Food Chemistry, 39, 2096–2100.

    Article  CAS  Google Scholar 

  8. Miller, G. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  9. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., et al. (2004). Laboratory Analytical Procedure (LAP). Golden: National Renewable Energy Laboratory.

    Google Scholar 

  10. Beldman, G., Voragen, A., Rombouts, F., Searle-van, L. M., & Pilnik, W. (1987). Biotechnology and Bioengineering, 30, 251–257.

    Article  CAS  Google Scholar 

  11. Kyriacou, A., Neufeld, C., & Ronald, J. (1988). Enzyme and Microbial Technology, 10, 675–681.

    Article  CAS  Google Scholar 

  12. Nidetzky, B., Steiner, W., & Claeyssens, M. (1994). Biochemical Journal, 303, 817–823.

    CAS  Google Scholar 

  13. Holtzapple, M., Cognata, M., Shu, Y., & Hendrickson, C. (1990). Biotechnology and Bioengineering, 36, 275–287.

    Article  CAS  Google Scholar 

  14. Tengborg, C., Galbe, M., & Zacchi, G. (2001). Enzyme and Microbial Technology, 28, 835–844.

    Article  CAS  Google Scholar 

  15. Grous, W., Converse, A., Grethlein, H., & Lynd, L. (1985). Biotechnology and Bioengineering, 27, 463–470.

    Article  CAS  Google Scholar 

  16. Gong, C., Ladisch, M., & Tsao, G. (1977). Biotechnology and Bioengineering, 19, 959–981.

    Article  CAS  Google Scholar 

  17. Ladisch, M., Gong, C., & Tsao, G. (1980). Biotechnology and Bioengineering, 22, 1107–1126.

    Article  CAS  Google Scholar 

  18. Xiao, Z., Zhang, X., Gregg, D., & Saddler, J. (2004). Applied Biochemistry and Biotechnology, 115, 1115–1126.

    Article  Google Scholar 

  19. Kristensen, J., Felby, C., & Jørgensen, H. (2009). Biotechnology for Biofuels, 2, 11–20.

    Article  Google Scholar 

  20. Medve, J., Karlsson, J., Lee, D., & Tjerneld, F. (1998). Biotechnology and Bioengineering, 59, 621–634.

    Article  CAS  Google Scholar 

  21. Jervis, E., Haynes, C., & Kilburn, D. (1997). Journal of Biological Chemistry, 272, 24016–24023.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge the financial support provided by Masada Oxynol, LLC, Alabama Center for Pulp and Bioresource Engineering, Laboratory of Biofuels and Biomaterials, Auburn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Kang, L., Wei, H. et al. Study on the Decreased Sugar Yield in Enzymatic Hydrolysis of Cellulosic Substrate at High Solid Loading. Appl Biochem Biotechnol 164, 1139–1149 (2011). https://doi.org/10.1007/s12010-011-9200-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9200-8

Keywords

Navigation