Skip to main content
Log in

Solvent-Stable Digestive Alkaline Proteinases from Striped Seabream (Lithognathus mormyrus) Viscera: Characteristics, Application in the Deproteinization of Shrimp Waste, and Evaluation in Laundry Commercial Detergents

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Alkaline proteases from the viscera of the striped seabream (Lithognathus mormyrus) were extracted and characterized. Interestingly, the crude enzyme was active over a wide range of pH from 6.0 to 11.0, with an optimum pH at the range of 8.0–10.0. In addition, the crude protease was stable over a broad pH range (5.0–12.0). The optimum temperature for enzyme activity was 50 °C. The crude alkaline proteases showed stability towards various surfactants and bleach agents and compatibility with some commercial detergents. It was stable towards several organic solvents and retained more than 50% of its original activity after 30 days of incubation at 30 °C in the presence of 25% (v/v) dimethyl sulfoxide, N,N-dimethylformamide, diethyl ether, and hexane. The crude enzyme extract was also tested for shrimp waste deproteinization in the preparation of chitin. The protein removal with a ratio enzyme/substrate of 10 was about 79%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Klomklao, S., Benjakul, S., Visessanguan, W., Kishimura, H., Simpson, B. K., & Saeki, H. (2006). Comparative Biochemistry and Physiology, 144, 47–56.

    Article  Google Scholar 

  2. Ström, T., & Eggum, B. O. (1981). Journal of the Science of Food and Agriculture, 32, 115–120.

    Article  Google Scholar 

  3. Joo, H. S., & Chang, C. S. (2006). Enzyme and Microbial Technology, 38, 176–183.

    Article  CAS  Google Scholar 

  4. Anwar, A., & Saleemuddin, M. (1998). Bioresource Technology, 64, 175–183.

    Article  CAS  Google Scholar 

  5. Gupta, R., Beg, Q. K., & Lorenz, P. (2002). Applied Microbiology and Biotechnology, 59, 15–32.

    Article  CAS  Google Scholar 

  6. Horikosh, K. (1996). FEMS Microbiology Reviews, 18, 259–270.

    Google Scholar 

  7. Kumar, C. G., & Takagi, H. (1999). Biotechnology Advances, 17, 561–594.

    Article  CAS  Google Scholar 

  8. Samal, B. B., Kara, B., & Stabinsky, Y. (1990). Biotechnology and Bioengineering, 35, 650–652.

    Article  CAS  Google Scholar 

  9. Banerjee, U. C., Sani, R. K., Azmi, W., & Soni, R. (1999). Process Biochemistry, 35, 213–219.

    Article  CAS  Google Scholar 

  10. Shahidi, F., & Synowiecki, J. (1991). Journal of Agricultural and Food Chemistry, 39, 1527–1532.

    Article  CAS  Google Scholar 

  11. Bhaskar, N., Suresh, P. V., Sakhare, P. Z., & Sachindra, N. M. (2007). Enzyme and Microbial Technology, 40, 1427–1434.

    Article  CAS  Google Scholar 

  12. Sini, T. K., Santhosh, S., & Mathew, P. T. (2007). Carbohydrate Research, 342, 2423–2429.

    Article  CAS  Google Scholar 

  13. Du, Y., Zhao, Y., Dai, S., & Yang, B. (2009). Innovative Food Science & Emerging Technologies, 10, 103–107.

    Article  CAS  Google Scholar 

  14. Rinaudo, M. (2006). Progress in Polymer Science, 31, 603–632.

    Article  CAS  Google Scholar 

  15. Roberts, G. A. F. (1992). Chitin Chemistry. London: Macmillan.

  16. Bustos, R.O. & Healy, M.G. (1994). Institution of Chemical Engineers Symposium Series, Institution of Chemical Engineers, England: Rugby pp. 13–15.

  17. Oh, K. T., Kim, Y. J., Nguyen, V. N., Jung, W. J., & Park, R. D. (2007). Process Biochemistry, 42, 1069–1074.

    Article  CAS  Google Scholar 

  18. Jo, G. H., Jung, W. J., Kuk, J. H., Oh, K. T., Kim, Y. J., & Park, R. D. (2008). Carbohydrate Polymers, 74, 504–508.

    Article  CAS  Google Scholar 

  19. Oh, Y. S., Shih, I. L., Tzeng, Y. M., & Wang, S. L. (2000). Enzyme and Microbial Technology, 27, 3–10.

    Article  CAS  Google Scholar 

  20. Manni, L., Jellouli, K., Ghorbel-Bellaaj, O., Agrebi, R., Haddar, A., Sellami-Kamoun, A., et al. (2010). Applied Biochemistry and Biotechnology, 160, 2308–2321.

    Article  CAS  Google Scholar 

  21. Simpson, B. K. (2000). Digestive proteases from marine animals. In N. F. Haard & B. K. Simpson (Eds.), Seafood enzymes (pp. 191–213). New York: Marcel Dekker.

    Google Scholar 

  22. Castillo-Yanez, F. J., Pacheco-Aguilar, R., Garcia-Carreno, F. L., & Navarrete-Del Toro, M. A. (2005). Comparative Biochemistry and Physiology, 140B, 91–98.

    CAS  Google Scholar 

  23. Espósito, T. S., Amaral, I. P. G., Buarque, D. S., Oliveira, G. B., Carvalho, L. B., Jr., & Bezerra, R. S. (2009). Food Chemistry, 112, 125–130.

    Article  Google Scholar 

  24. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  25. Garcia-Carreno, F. L., Dimes, L. E., & Haard, N. F. (1993). Analytical Biochemistry, 214, 65–69.

    Article  CAS  Google Scholar 

  26. Rao, M. S., Muñoz, J., & Stevens, W. F. (2000). Applied Microbiology and Biotechnology, 54, 808–813.

    Article  CAS  Google Scholar 

  27. Kembhavi, A. A., Kulkarni, A., & Pant, A. (1993). Applied Biochemistry and Biotechnology, 38, 83–92.

    Article  CAS  Google Scholar 

  28. Tsai, I. H., Chuano, K. L., & Chuang, J. L. (1986). Comparative Biochemistry and Physiology. Part B: Biochemistry & Molecular Biology, 85, 235–239.

    Article  Google Scholar 

  29. El Hadj Ali, N., Hmidet, N., Bougatef, A., Nasri, R., & Nasri, M. (2009). Journal of Agricultural and Food Chemistry, 57, 10943–10950.

    Article  Google Scholar 

  30. Erlanger, B. F., Kokowsky, N., & Cohen, W. (1961). Archives of Biochemistry and Biophysics, 95, 271–278.

    Article  CAS  Google Scholar 

  31. Benjakul, S., Visessanguan, W., & Thummaratwasik, P. (2000). Journal of Food Biochemistry, 24, 107–127.

    Article  CAS  Google Scholar 

  32. North, M. J. (1982). Microbiology Review, 46, 308–340.

    CAS  Google Scholar 

  33. Alencar, R. B., Biondi, M. M., Paiva, P. M. G., Vieira, V. L. A., Carvalho, L. B., Jr., Bezerra, R., et al. (2003). Brazilian Journal of Food Technology, 6, 279–284.

    CAS  Google Scholar 

  34. Espósito, T. S., Amaral, I. P. G., Marcuschi, M., Carvalho, L. B., Jr., & Bezerra, R. S. (2009). Journal of Food Biochemistry, 33, 821–834.

    Article  Google Scholar 

  35. Mendes, C. M., Brito, M. A., Porto, T. S., Porto, A. L. F., Bezerra, R. S., Carvalho, L. B., Jr., et al. (2009). Chemical Papers, 63, 662–669.

    Article  CAS  Google Scholar 

  36. Aranishi, F., Watanabe, T., Osatomi, K., Cao, M., Hara, K., & Ishihara, T. (1998). Journal of Marine Biotechnology, 6, 116–123.

    CAS  Google Scholar 

  37. Wang, Q., Gao, Z. X., Zhang, N., Shi, Y., Xie, X. L., & Chen, Q. X. (2010). Journal of Agriculture and Food Chemistry, 58, 655–659.

    Article  CAS  Google Scholar 

  38. Gupta, R., Gupta, K., Saxena, R. K., & Khan, S. (1999). Biotechnological Letters, 21, 135–138.

    Article  CAS  Google Scholar 

  39. Haddar, A., Bougatef, A., Agrebi, R., Sellami-Kamoun, A., & Nasri, M. (2009). Process Biochemistry, 44, 29–35.

    Article  CAS  Google Scholar 

  40. Outtrup, H., Dambmann, C. & Aaslyng D.A. (1993). Patent number WO/1993/024623.

  41. Outtrup, H., Dambmann, C., Christiansen, M. & Aaslyng, D.A. (1995). US patent number 5,466,594.

  42. Boguslawski, G. & Shultz, J.W. (1992). US Patent number 5, 118,623.

  43. Wang, S. L., Hsu, W. T., Liang, T. W., Yen, Y. H., & Wang, C. L. (2008). Bioresource Technology, 99, 5679–5686.

    Article  CAS  Google Scholar 

  44. Wang, S. L., & Yeh, P. Y. (2006). Process Biochemistry, 41, 1545–1552.

    Article  CAS  Google Scholar 

  45. Fang, Y., Liu, S., Wang, S., & Lv, M. (2009). Biochemistry Engineering Journal, 43, 212–215.

    Article  CAS  Google Scholar 

  46. Jellouli, K., Bayoudh, A., Manni, L., Agrebi, R., & Nasri, M. (2008). Applied Microbiology and Biotechnology, 79, 989–999.

    Article  CAS  Google Scholar 

  47. Volkin, D., Staubli, A., Langer, R., & Klibanov, A. (1991). Biotechnology and Bioengineering, 37, 843–853.

    Article  CAS  Google Scholar 

  48. Gupta, A., Roy, I., Khare, S. K., & Gupta, M. N. (2005). Journal of Chromatography A, 1069, 155–165.

    Article  CAS  Google Scholar 

  49. Ghorbel, B., Sellami-Kamoun, A., & Nasri, M. (2003). Enzyme and Microbial Technology, 32, 513–518.

    Article  CAS  Google Scholar 

  50. Yang, J. K., Shih, I. L., Tzeng, Y. M., & Wang, S. L. (2000). Enzyme and Microbial Technology, 26, 406–413.

    Article  CAS  Google Scholar 

  51. Jung, W. J., Jo, G. H., Kuk, J. H., Kim, Y. J., Oh, K. T., & Park, R. D. (2007). Carbohydrate Polymers, 68, 746–750.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Ministry of Higher Education and Scientific Research, Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moncef Nasri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Hadj Ali, N., Hmidet, N., Ghorbel-Bellaaj, O. et al. Solvent-Stable Digestive Alkaline Proteinases from Striped Seabream (Lithognathus mormyrus) Viscera: Characteristics, Application in the Deproteinization of Shrimp Waste, and Evaluation in Laundry Commercial Detergents. Appl Biochem Biotechnol 164, 1096–1110 (2011). https://doi.org/10.1007/s12010-011-9197-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9197-z

Keywords

Navigation