Skip to main content
Log in

Enriched Microbial Community in Bioaugmentation of Petroleum-Contaminated Soil in the Presence of Wheat Straw

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The bioaugmentation of petroleum-contaminated soil using Enterobacter cloacae was profiled from the evolution of microbial community, soil dehydrogenase activity, to the degradation of petroleum contaminants. The seeding and proliferation of inoculant and the consequential microbial community were monitored by denaturing gradient gel electrophoresis analysis of the amplification of V3 zone of 16S rDNA. Degradation process kinetics was characterized by the degradation ratio of nC17 to nC18. The dehydrogenase activity was also determined during the degradation process. An abrupt change in the microbial community after inoculation was illustrated as well as successive changes in response to degradation of the petroleum contaminants. Seeding with E. cloacae stimulated the growth of other degrading stains such as Pseudomonas sp. and Rhodothermus sp. The application of wheat straw as a representative lignin waste, at 5% (w/w), induced an increase in the total dehydrogenase activity from 0.50 to 0.79, an increase in the microbial content of 130% for bacteria and 84% for fungi, and an increase of the overall degradation ratio from 44% to 56% after 56 days of treatment. The above mentioned results have provided a microbial ecological insight being essential for the design and implementation of bioaugmentation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kästner, M., & Marho, B. (1996). Applied Microbiology and Biotechnology, 44, 668–675.

    Article  Google Scholar 

  2. Swannell, R. P., & Head, I. M. (1994). Nature, 368, 396–397.

    Article  Google Scholar 

  3. Thompson, I. P., van der Gast, C. J., Ciric, L., & Singer, A. C. (2005). Environmental Microbiology, 7, 909–915.

    Article  CAS  Google Scholar 

  4. Gentry, T. J., Rensing, C., & Pepper, I. L. (2004). Critical Reviews in Environmental Science and Technology, 34, 447–494.

    Article  CAS  Google Scholar 

  5. El Frantroussi, S., & Agathos, S. N. (2005). Current Opinion in Microbiology, 8, 268–275.

    Article  Google Scholar 

  6. Dejonghe, W., Boon, N., Seghers, D., Top, E. M., & Verstraete, W. (2001). Environmental Microbiology, 3, 649–657.

    Article  CAS  Google Scholar 

  7. Roane, T. M., Josephson, K. L., & Pepper, I. L. (2001). Applied and Environmental Microbiology, 67, 3208–3215.

    Article  CAS  Google Scholar 

  8. Elis, D. E., Lutz, E. J., Odom, J. M., Buchanan, R. J., Bartlett, C. L., Lee, M. D., et al. (2000). Environmental Science & Technology, 34, 2254–2260.

    Article  Google Scholar 

  9. Vogel, T. M. (1996). Current Opinion in Biotechnology, 7, 311–316.

    Article  CAS  Google Scholar 

  10. Han, H. L., Tang, J., Jiang, H., Zhang, M. L., & Liu, Z. (2008). Environmental Science (in Chinese), 29, 189–195.

    Google Scholar 

  11. Han, H. L., Chen, Z., Yang, J. M., Miao, C. C., Zhang, K., Jin, W. B., et al. (2008). Environmental Science (in Chinese), 29, 184–191.

    Google Scholar 

  12. Zhang, K., Hua, X. F., Han, H. L., Wang, J., Miao, C. C., Xu, Y. Y., et al. (2008). Chemosphere, 73, 1387–1392.

    Article  CAS  Google Scholar 

  13. Callaham, M. A., Stewart, A. J., Alarcon, C., & McMillen, S. J. (2002). Environmental Toxicology and Chemistry, 21, 1658–1663.

    CAS  Google Scholar 

  14. Stevenson, F. J. (1994). Humus chemistry: genesis composition, reactions (2nd ed., pp. 24–34). Berlin: Springer.

    Google Scholar 

  15. Hofrichter, M., & Steinbüchel, A. (2001). Biopolymers, volume 1: lignin, humic substances and coal (pp. 24–34). Weinheim: Wiley.

    Google Scholar 

  16. Li, H., Zhang, Y., Zhang, C. G., & Chen, G. X. (2005). Journal of Environmental Quality, 34, 1073–1080.

    Article  CAS  Google Scholar 

  17. Li, H., Zhang, Y., Irina, K., Xu, H., & Mang, C. G. (2007). Journal of Environmental Sciences (China), 19, 1003–1013.

    Article  Google Scholar 

  18. Wilfred, F. M., Michael, G. M., Martin, J., Francesco, F., Richard, P. J. S., Fabien, D., et al. (2004). Applied and Environmental Microbiology, 70, 2603–2613.

    Article  Google Scholar 

  19. Marc, V., Jordi, S., & María, J. (2005). Applied and Environmental Microbiology, 71, 7008–7018.

    Article  Google Scholar 

  20. Coppotelli, B. M., Ibarrolaza, A., Del Panno, M. T., & Morelli, I. S. (2008). Microbial Ecology, 55, 173–183.

    Article  CAS  Google Scholar 

  21. Katsivela, E., Moore, E. R. B., Maroukli, D., Strompl, C., Pieper, D., & Kalogerakis, N. (2005). Biodegradation, 16, 169–180.

    Article  CAS  Google Scholar 

  22. Denaro, R., Auria, G. D., Di Marco, G., Genovese, M., Troussellier, M., Yakimov, M. M., et al. (2005). Environmental Microbiology, 7, 78–87.

    Article  CAS  Google Scholar 

  23. Zhou, J. Z., Bruns, M. A., & Tiedje, J. M. (1996). Applied and Environmental Microbiology, 62, 316–322.

    CAS  Google Scholar 

  24. Yan, S. T., Miyanaga, K., Xing, X. H., & Tanji, Y. (2008). Biochemical Engineering Journal, 39, 598–603.

    Article  CAS  Google Scholar 

  25. Muyzer, G., Ellen, D. W., & Ander, G. U. (1993). Applied and Environmental Microbiology, 59, 695–700.

    CAS  Google Scholar 

  26. Shen, P., Fan, X. F., & Li, G. W. (1999). Microbiology experiment (3rd ed., pp. 92–95). Beijing: Higher Education.

    Google Scholar 

  27. Hua, X. F., Wang, J., Wu, Z. J., Zhang, H. X., Li, H. P., Xing, X. H., et al. (2010). Biochemical Engineering Journal, 49, 201–206.

    Article  CAS  Google Scholar 

  28. Li, B.M. (2007). Microbial remediation of oil contaminated soil. Dissertation, Soil and Fertilizer Institute, Chinese Academy of Agricultural Sciences.

  29. Ishihara, A., Dumeignil, F., Aoyagi, T., Nishikawa, M., Hosomi, M., Qian, E. W., et al. (2008). Journal of the Japan Petroleum Institute, 51, 174–179.

    Article  CAS  Google Scholar 

  30. Suzuki, S., & Hiraishi, A. (2007). The Journal of General and Applied Microbiology, 53, 221–228.

    Article  CAS  Google Scholar 

  31. Morgante, V., Lopez-Lopez, A., Flores, C., Gonzalez, M., Gonzalez, B., Vasquez, M., et al. (2010). FEMS Microbiology Ecology, 71, 114–126.

    Article  CAS  Google Scholar 

  32. Sako, Y., Takai, K., Ishida, Y., Uchida, A., & Katayama, Y. (1996). International Journal of Systematic Bacteriology, 46, 1099–1104.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the China Petroleum and Chemical Corporation. The authors would like to extend their thanks to Prof. Xinhui Xing at the Department of Chemical Engineering, Tsinghua University for his productive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Z., Dong, H., Zou, L. et al. Enriched Microbial Community in Bioaugmentation of Petroleum-Contaminated Soil in the Presence of Wheat Straw. Appl Biochem Biotechnol 164, 1071–1082 (2011). https://doi.org/10.1007/s12010-011-9195-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9195-1

Keywords

Navigation