Skip to main content
Log in

Protein Refolding by N-Alkylpyridinium and N-Alkyl-N-methylpyrrolidinium Ionic Liquids

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An important property of ionic liquids consisting of cations and anions is that the chemical structures can be easily tuned. To expand the repertoire of effective ionic liquid-based refolding additives, we focused on this tunable property and investigated the effects of new candidates such as N-alkylpyridinium chlorides and N-alkyl-N-methylpyrrolidinium chlorides on protein refolding. Denatured lysozyme (30 mg/mL) was used as a model protein and refolded by 30-fold dilution with various refolding buffers containing different ionic liquids consisting of a systematic variety of alkyl chains. Compared with the refolding yield without additives (lower than 10%), less hydrophobic ionic liquids such as N-ethyl, N-butyl and N-hexylpyridinium chlorides, and N-butyl-N-methylpyrrolidinium chloride were effective in enhancing the refolding yields (46–69%), because they primarily suppressed aggregation because of their chaotropic properties. N-alkylpyridinium cations were more hydrophobic than N-alkyl-N-methylpyrrolidinium cations according to the calculated log P values and prevented aggregation at lower concentrations because of their hydrophobicity. The results provide a range of new effective ionic liquid-based additives for higher protein refolding yields and the knowledge of the effect of chemical structures of additives on protein refolding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baneyx, F. (1999). Recombinant protein expression in Escherichia coli. Current Opinion in Biotechnology, 10, 411–421.

    Article  CAS  Google Scholar 

  2. Baneyx, F., & Mujacic, M. (2004). Recombinant protein folding and misfolding in Escherichia coli. Nature Biotechnology, 22, 1399–1408.

    Article  CAS  Google Scholar 

  3. Singh, S. M., & Panda, A. K. (2005). Solubilization and refolding of bacterial inclusion body proteins. Journal of Bioscience and Bioengineering, 99, 303–310.

    Article  CAS  Google Scholar 

  4. Jungbauer, A., & Kaar, W. (2007). Current status of technical protein refolding. Journal of Biotechnology, 128, 587–596.

    Article  CAS  Google Scholar 

  5. Goldberg, M. E., Rudolph, R., & Jaenicke, R. (1991). A kinetic study of the competition between renaturation and aggregation during the refolding of denatured-reduced egg white lysozyme. Biochemistry, 30, 2790–2797.

    Article  CAS  Google Scholar 

  6. Clark, E. D. (2001). Protein refolding for industrial processes. Current Opinion in Biotechnology, 12, 202–207.

    Article  CAS  Google Scholar 

  7. Hevehan, D. L., & Clark, E. D. (1997). Oxidative renaturation of lysozyme at high concentrations. Biotechnology and Bioengineering, 54, 221–230.

    Article  CAS  Google Scholar 

  8. Yasuda, M., Murakami, Y., Sowa, A., Ogino, H., & Ishikawa, H. (1998). Effect of additives on refolding of a denatured protein. Biotechnology Progress, 14, 601–606.

    Article  CAS  Google Scholar 

  9. Raman, B., Ramakrishna, T., & Rao, C. M. (1996). Refolding of denatured and denatured/reduced lysozyme at high concentrations. The Journal of Biological Chemistry, 271, 17067–17072.

    Article  CAS  Google Scholar 

  10. Wetlaufer, D. B., & Xie, Y. (1995). Control of aggregation in protein refolding: a variety of surfactants promote renaturation of carbonic anhydrase II. Protein Science, 4, 1535–1543.

    Article  CAS  Google Scholar 

  11. Bam, N. B., Cleland, J. L., & Randolph, T. W. (1996). Molten globule intermediate of recombinant human growth hormone: Stabilization with surfactants. Biotechnology Progress, 12, 801–809.

    Article  CAS  Google Scholar 

  12. Orsini, G., & Goldberg, M. E. (1978). Renaturation of reduced chymotrypsinogen-a in guanidine Hcl-Refolding versus aggregation. The Journal of Biological Chemistry, 253, 3453–3458.

    CAS  Google Scholar 

  13. Dong, X. Y., Shi, J. H., & Sun, Y. (2002). Cooperative effect of artificial chaperones and guanidinium chloride on lysozyme renaturation at high concentrations. Biotechnology Progress, 18, 663–665.

    Article  CAS  Google Scholar 

  14. Tsumoto, K., Umetsu, M., Kumagai, I., Ejima, D., Philo, J. S., & Arakawa, T. (2004). Role of arginine in protein refolding, solubilization, and purification. Biotechnology Progress, 20, 1301–1308.

    Article  CAS  Google Scholar 

  15. Hamada, H., & Shiraki, K. (2007). L-argininamide improves the refolding more effectively than l-arginine. Journal of Biotechnology, 130, 153–160.

    Article  CAS  Google Scholar 

  16. Buchfink, R., Tischer, A., Patil, G., Rudolph, R., & Lange, C. (2010). Ionic liquids as refolding additives: Variation of the anion. Journal of Biotechnology, 150, 64–72.

    Article  CAS  Google Scholar 

  17. Summers, C. A., & Flowers, R. A., 2nd. (2000). Protein renaturation by the liquid organic salt ethylammonium nitrate. Protein Science, 9, 2001–2008.

    Article  CAS  Google Scholar 

  18. Lange, C., Patil, G., & Rudolph, R. (2005). Ionic liquids as refolding additives: N′-alkyl and N′-(omega-hydroxyalkyl) N-methylimidazolium chlorides. Protein Science, 14, 2693–2701.

    Article  CAS  Google Scholar 

  19. Yamaguchi, S., Yamamoto, E., Tsukiji, S., & Nagamune, T. (2008). Successful control of aggregation and folding rates during refolding of denatured lysozyme by adding N-methylimidazolium cations with various N′-substituents. Biotechnology Progress, 24, 402–408.

    Article  CAS  Google Scholar 

  20. Saxena, V. P., & Wetlaufer, D. B. (1970). Formation of three-dimensional structure in proteins. I. Rapid nonenzymic reactivation of reduced lysozyme. Biochemistry, 9, 5015–5023.

    Article  CAS  Google Scholar 

  21. Reddy, R. C., Lilie, H., Rudolph, R., & Lange, C. (2005). l-Arginine increases the solubility of unfolded species of hen egg white lysozyme. Protein Science, 14, 929–935.

    Article  Google Scholar 

  22. Kolkenbrock, S., Parschat, K., Beermann, B., Hinz, H. J., & Fetzner, S. (2006). N-acetylanthranilate amidase from Arthrobacter nitroguajacolicus Ru61a, an alpha/beta-hydrolase-fold protein active towards aryl-acylamides and -esters, and properties of its cysteine-deficient variant. Journal of Bacteriology, 188, 8430–8440.

    Article  CAS  Google Scholar 

  23. Clark, E. D., Hevehan, D., Szela, S., & Maachupalli-Reddy, J. (1998). Oxidative renaturation of hen egg-white lysozyme. Folding vs aggregation. Biotechnology Progress, 14, 47–54.

    Article  Google Scholar 

  24. MaachupalliReddy, J., Kelley, B. D., & Clark, E. D. (1997). Effect of inclusion body contaminants on the oxidative renaturation of hen egg white lysozyme. Biotechnology Progress, 13, 144–150.

    Article  CAS  Google Scholar 

  25. Dong, X. Y., Huang, Y., & Sun, Y. (2004). Refolding kinetics of denatured-reduced lysozyme in the presence of folding aids. Journal of Biotechnology, 114, 135–142.

    Article  CAS  Google Scholar 

  26. Wetzel, R., Perry, L. J., Baase, W. A., & Becktel, W. J. (1988). Disulfide bonds and thermal stability in T4 lysozyme. Proceedings of the National Academy of Sciences of the United States of America, 85, 401–405.

    Article  CAS  Google Scholar 

  27. Matsuoka, T., Tomita, S., Hamada, H., & Shiraki, K. (2007). Amidated amino acids are prominent additives for preventing heat-induced aggregation of lysozyme. Journal of Bioscience and Bioengineering, 103, 440–443.

    Article  CAS  Google Scholar 

  28. Zhao, H., Olubajo, O., Song, Z. Y., Sims, A. L., Person, T. E., Lawal, R. A., et al. (2006). Effect of kosmotropicity of ionic liquids on the enzyme stability in aqueous solutions. Bioorganic Chemistry, 34, 15–25.

    Article  CAS  Google Scholar 

  29. Zhao, H., Campbell, S. M., Jackson, L., Song, Z. Y., & Olubajo, O. (2006). Hofmeister series of ionic liquids: Kosmotropic effect of ionic liquids on the enzymatic hydrolysis of enantiomeric phenylalanine methyl ester. Tetrahedron Asymmetry, 17, 377–383.

    Article  CAS  Google Scholar 

  30. Zhao, H. (2005). Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids. Journal of Molecular Catalysis. B, Enzymatic, 37, 16–25.

    Article  CAS  Google Scholar 

  31. Broering, J. M., & Bommarius, A. S. (2005). Evaluation of Hofmeister effects on the kinetic stability of proteins. The Journal of Physical Chemistry. B, 109, 20612–20619.

    Article  CAS  Google Scholar 

  32. Zhao, H. (2006). Are ionic liquids kosmotropic or chaotropic? An evaluation of available thermodynamic parameters for quantifying the ion kosmotropicity of ionic liquids. Journal of Chemical Technology and Biotechnology, 81, 877–891.

    Article  CAS  Google Scholar 

  33. Wang, J., Lu, D., Lin, Y., & Liu, Z. (2005). How CTAB assists the refolding of native and recombinant lysozyme. Biochemical Engineering Journal, 24, 269–277.

    Article  CAS  Google Scholar 

  34. Yamamoto, E., Yamaguchi, S., & Nagamune, T. (2011). Synergistic effects of detergents and organic solvents on protein refolding: Control of aggregation and folding rates. Journal of Bioscience and Bioengineering, 111, 10–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Kouhei Tsumoto and Dr. Motonori Kudou for providing us with the opportunity to do DSC measurements. This work was supported in part by a Grant-in-Aid for Young Scientists (B) from the MEXT of Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Satoshi Yamaguchi or Teruyuki Nagamune.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

DOC 533 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, E., Yamaguchi, S. & Nagamune, T. Protein Refolding by N-Alkylpyridinium and N-Alkyl-N-methylpyrrolidinium Ionic Liquids. Appl Biochem Biotechnol 164, 957–967 (2011). https://doi.org/10.1007/s12010-011-9187-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9187-1

Keywords

Navigation