Skip to main content
Log in

Ethanol Production from Cashew Apple Bagasse: Improvement of Enzymatic Hydrolysis by Microwave-Assisted Alkali Pretreatment

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, the potential of microwave-assisted alkali pretreatment in order to improve the rupture of the recalcitrant structures of the cashew able bagasse (CAB), lignocellulosic by-product in Brazil with no commercial value, is obtained from cashew apple process to juice production, was studied. First, biomass composition of CAB was determined, and the percentage of glucan and lignin was 20.54 ± 0.70% and 33.80 ± 1.30%, respectively. CAB content in terms of cellulose, hemicelluloses, and lignin, 19.21 ± 0.35%, 12.05 ± 0.37%, and 38.11 ± 0.08%, respectively, was also determined. Results showed that, after enzymatic hydrolysis, alkali concentration exerted influence on glucose formation, after pretreatment with 0.2 and 1.0 mo L−1 of NaOH (372 ± 12 and 355 ± 37 mg g −1glucan ) when 2% (w/v) of cashew apple bagasse pretreated by microwave-assisted alkali pretreatment (CAB-M) was used. On the other hand, pretreatment time (15–30 min) and microwave power (600–900 W) exerted no significant effect on hydrolysis. On enzymatic hydrolysis step, improvement on solid percentage (16% w/v) and enzyme load (30 FPU g −1CAB-M ) increased glucose concentration to 15 g L−1. The fermentation of the hydrolyzate by Saccharomyces cerevesiae resulted in ethanol concentration and productivity of 5.6 g L−1 and 1.41 g L−1 h−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CAB:

Cashew apple bagasse

CAB-M:

Cashew apple bagasse pretreated by microwave-assisted alkali pretreatment

CB:

Cellobiose

CBU:

Cellobiase activity was expressed as cellobiase units (CBU) per milliliter of enzymatic mixture

CBU/g:

Cellobiase activity per gram of raw material

FP:

Filter paper Whatman n°1

FPU:

Filter paper activity was expressed as filter paper units (FPU) per milliliter of enzymatic mixture

FPU/g:

Filter paper activity per gram of raw material

η:

Efficiency of fermentation (%)

P f :

Ethanol concentration (g L−1)

Q p :

Ethanol productivity (g L−1 h−1)

S i :

Initial glucose concentration (g L−1)

S f :

Final glucose concentration (g L−1)

T :

Time (h)

U cellobiose :

Enzyme amount that converts 1 μmol of cellobiose to 2 μmol of glucose in 1 min on reaction conditions

Y p/s :

Conversion substrate/product (g g−1)

References

  1. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  2. Hahn-Hägerdal, B., Galbe, M., Gorwa-grauslund, M. F., Lidén, G., & Zacchi, G. (2006). Trends in Biotechnology, 24(12), 549–556.

    Article  Google Scholar 

  3. Zhu, S. D., Wu, Y. X., Yu, Z. N., Zhang, X., Wang, C. W., Yu, F. Q., et al. (2006). Process Biochemistry, 41, 869–873.

    Article  CAS  Google Scholar 

  4. Kim, J. S., Kim, H., Lee, J. S., Lee, J. P., & Park, S. C. (2008). Applied Biochemistry and Biotechnology, 148, 15–22.

    Article  CAS  Google Scholar 

  5. Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101, 4851–4861.

    Article  CAS  Google Scholar 

  6. Alzate, C. A. C., & Toro, O. J. S. (2006). Energy, 31, 2447–2459.

    Article  Google Scholar 

  7. Hu, Z. H., & Wen, Z. Y. (2008). Biochemical Engineering Journal, 38, 369–378.

    Article  CAS  Google Scholar 

  8. Cardona, C. A., Quintero, J. A., & Paz, I. C. (2010). Bioresource Technology, 101, 4754–4766.

    Article  CAS  Google Scholar 

  9. Food and Agriculture Organization of the United Nations in http://faostat.fao.org/site/339/default.aspx. Accessed 1 May 2010

  10. Instituto Brasileiro de Pesquisa e Estatística in www.ibge.gov.br. Accessed 1 May 2010

  11. Ferreira, A. C. H., Neiva, J. N. M., Rodríguez, N. M., Lobo, R. N. B., & Vasconcenlos, V. R. (2004). Revista Brasileira de Zootecnia, 33, 1380–1385.

    Google Scholar 

  12. Matias, M. F. O., Oliveira, E. L., Gertrudes, E., & Magalhães, M. M. A. (2005). Brazilian Archives of Biology and Technology, 48, 143–150.

    Article  Google Scholar 

  13. Rodrigues, T. H. S., Dantas, M. A., Pinto, G., & Gonçalves, L. R. B. (2007). Biotechnology and Applied Biochemistry, 136, 675–688.

    Article  Google Scholar 

  14. Rocha, M. V. P., Rodrigues, T. H. S., Macedo, G. R., & Gonçalves, L. R. B. (2009). Applied Biochemistry and Biotechnology, 155, 407–417. doi:10.1007/s12010-008-8432-8.

    Article  CAS  Google Scholar 

  15. Zhu, S. D., Wu, Y. X., Yu, Z. N., Liao, J. T., & Zhang, Y. (2005). Process Biochemistry, 40, 3082–3086.

    Article  CAS  Google Scholar 

  16. Keshwani, D. R. (2009) In: Microwave pretreatment of switchgrass for bioethanol production. D. Thesis, University of North Carolina State

  17. Gabriel, C., Gabriel, S., Grant, E. H., Halstead, B. S. J., & Mingos, D. M. P. (1998). Chemical Society Reviews, 27(3), 213–223.

    Article  CAS  Google Scholar 

  18. Datta, A. K. (2001). In A. K. Datta & R. C. Anantheswaran (Eds.), Handbook of microwave technology for food applications. New York: Marcel Dekker Inc.

    Google Scholar 

  19. Jones, D. A., Lelyveld, T. P., Mavrofidis, S. D., Kingman, S. W., & Miles, N. J. (2002). Resources, Conservation and Recycling, 34, 75–90.

    Article  Google Scholar 

  20. Mutyala, S., Fairbridge, C., Paré, J. R. J., Bélanger, J. M. R., Ng, S., & Hawkins, R. (2010). Fuel Processing Technology, 91, 127–135.

    Article  CAS  Google Scholar 

  21. Ma, H., Liu, W. W., Xing, C., Wua, Y. J., & Yu, Z. L. (2009). Bioresource Technology, 100, 1279–1274.

    Article  CAS  Google Scholar 

  22. De la Hoz, A., Diaz-Ortiz, A., & Moreno, A. (2005). Chemical Society Reviews, 34(2), 164–178.

    Article  Google Scholar 

  23. Zhu, S. D., Wu, Y. X., Yu, Z. N., Wang, C. W., Yu, F. Q., Jin, S. W., et al. (2006). Biosystems Engineering, 93(3), 279–283.

    Article  Google Scholar 

  24. Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Laboratory Analytical Procedure (LAP). NREL: Technical Report.

    Google Scholar 

  25. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., et al. (2008). Laboratory Analytical Procedure (LAP). NREL: Technical Report.

    Google Scholar 

  26. Hames, B., Ruiz, R., Scarlate, C., Sluiter, A., Sluiter, J., & Templeton, D. (2008). Laboratory Analytical Procedure (LAP). NREL: Technical Report.

    Google Scholar 

  27. Gouveia, E. R., Do Nascimento, R. T., Souto-maior, A. M., Rocha, G. J. M., & Rocha, G. J. M. (2009). Quimica Nova, 32(6), 1500–1503.

    Article  CAS  Google Scholar 

  28. Ghose, T. K. (1987). Pure and Applied Chemistry, 59(2), 257–268.

    Article  CAS  Google Scholar 

  29. Adriano, W. S. (2009). In: Preparação e caracterização de derivados de enzimas industriais em quitosana. São Paulo, Brazil: D. Thesis, University of São Carlos.

    Google Scholar 

  30. Atala, D. I. P., Costa, A. C., & Maciel, R. (2001). Applied Biochemistry and Biotechnology, 91–3, 353–365.

    Article  Google Scholar 

  31. Kaar, W. E., & Holtzapple, M. T. (2000). Biomass and Bionergy, 18(3), 189–199.

    Article  CAS  Google Scholar 

  32. Playne, M. J. (1984). Biotechnology and Bioengineering, 26(5), 426–433.

    Article  CAS  Google Scholar 

  33. Chang, V. S., Burr, B., & Holtzapple, M. T. (1997). Applied Biochemistry and Biotechnology, 63–65, 3–19.

    Article  Google Scholar 

  34. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Bioresource Technology, 96(6), 673–686.

    Article  CAS  Google Scholar 

  35. MacDonald, D. G., Bakhshi, N. N., Mathews, J. P., Roychowdhurry, A., Bajpai, P., & Moo-Young. (1983). Biotechnology and Bioengineering, 25, 2067–2076.

    Article  CAS  Google Scholar 

  36. Fox, D. J., Gray, P. P., Dunn, N. W., & Warwick, L. M. (1989). Journal of Chemical Technology and Biotechnology, 44, 135–146.

    CAS  Google Scholar 

  37. Soto, M. L., Dominguez, H., Nunez, M. J., & Lema, J. M. (1994). Bioresource Technology, 49, 53–59.

    Article  CAS  Google Scholar 

  38. Sharmas, S. K., Kalra, K. L., & Grewal, H. S. (2002). Biomass Bioenergy, 23(3), 237–243.

    Article  Google Scholar 

  39. Zhu, S. D., Wu, Y. X., Yu, Z. N., Zhang, X., Li, H., & Gao, M. (2006). Bioresource Technology, 97(15), 1964–1968.

    Article  CAS  Google Scholar 

  40. Zhu, S. D., Wu, Y. X., Yu, Z. N., Chen, Q. M., Wu, G. Y., Yu, F. Q., et al. (2006). Biosystems Engineering, 94(3), 437–442.

    Article  Google Scholar 

  41. Keshwani, D. R., & Cheng, J. J. (2010). Biotechnology and Bioengineering, 105(1), 88–97.

    Article  CAS  Google Scholar 

  42. Zhao, X. B., Zhou, Y. J., Zheng, G. G., & Liu, D. H. (2010). Applied Biochemistry and Biotechnology, 160, 1557–1571. doi:10.1007/s12010-009-8640-x.

    Article  CAS  Google Scholar 

  43. Tengborg, C., Galbe, M., & Zacchi, G. (2001). Biotechnology Progress, 17, 110–117.

    Article  CAS  Google Scholar 

  44. Vásquez, M. P., Silva, J. N. C., Souza, M. B., Jr., & Pereira, N., Jr. (2007). Applied Biochemistry and Biotechnology, 136–140, 141–154.

    Article  Google Scholar 

  45. Pacheco, A. M., Gondim, D. R., & Gonçalves, L. R. B. (2010). Applied Biochemistry and Biotechnology, 161, 209–217.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Brazilian research-funding agencies ANP, CAPES, and CNPq (Federal). In addition, the authors gratefully acknowledge the “Laboratório de Processos Biotecnológicos”, located at Universidade Federal de Pernambuco (Brazil), for the support during the cashew apple bagasse characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tigressa Helena Soares Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, T.H.S., Rocha, M.V.P., de Macedo, G.R. et al. Ethanol Production from Cashew Apple Bagasse: Improvement of Enzymatic Hydrolysis by Microwave-Assisted Alkali Pretreatment. Appl Biochem Biotechnol 164, 929–943 (2011). https://doi.org/10.1007/s12010-011-9185-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9185-3

Keywords

Navigation